14 resultados para electron-withdrawing group effects
em Aston University Research Archive
Resumo:
Phosphonoformate and phosphonoacetate are effective antiviral agents, however they are charged at physiological pH and as such penetration into cells and diffusion across the blood-brain bamer is limited. In an attempt to increase the lipophilicity and improve the transport properties of these molecules, prodrugs were synthesised and their stabilities and reconversion to the parent compound subsequently investigated by the techniques of 31P nuclear magnetic resonance spectroscopy and high performance liquid Chromatography. A series of 4-substituted dibenzyl (methoxycarbonyl)phosphonates were prepared and found to be hydrolytically unstable giving predominantly the diesters, benzyl (methoxycarbonyl)phosphonates. This instability arose from the electron-withdrawing effect of the carbonyl group promoting nucleophilic attack at phosphorus. It was possible to influence the mechanism and, to some extent, the rate of hydrolysis of the phosphonoformate triesters to the diesters by varying the electronic nature of the substituent in the 4-position of the aromatic ring. Strongly electron-withdrawing groups increased the sensitivity of phosphorus to nucleophilic attack, thus promoting P-O .bond cleavage and rapid hydrolysis. Conversely, weakly electron-withdrawing substituents encouraged C-O bond fission, presumably through resonance stabilisation of the benzyl carbonium ion. The loss of the protecting group on phosphorus was in competition with nucleophilic attack at the carbonyl group, resulting in P-C bond cleavage with dibenzyl phosphite formation. The high instability and P-C bond fission make triesters unsuitable prodrug forms of phosphonoformate. A range of chemically stable triesters of phosphonoacetate were synthesised and their bioactivation investigated. Di(benzoyloxymethyl) (methoxycarbonylmethyl)phosphonates degraded to the relevant benzoyloxymethyl (methoxycarbonylmethyl)phosphonate in the presence of esterase. The enzymatic activation was restricted to the removal of only one protecting group from phosphorus, most likely due to the close proximity of the benzoyloxy ester function to the anionic charge on the diester. However, in similar systems di(4-alkanoyloxybenzyl) (methoxycarbonylmethyl)phosphonates degraded in the presence of esterase with the loss of both protecting groups on phosphorus to give the monoester, (methoxycarbonylmethyl)phosphonate, via the intermediary of the unstable 4-hydroxy benzyl esters. The methoxycarbonyl function remained intact. The rate of enzymatic hydrolysis and subsequent removal of the protecting groups on phosphorus was dependent on the nature of the alkanoyl group and was most rapid for the 4-nbutanoyloxybenzyl and 4-iso-butanoyloxybenzyl esters of phosphonoacetate. This provides a strategy for the design of a prodrug with sufficient stability in plasma to reach the central nervous system in high concentration, wherein rapid metabolism to the active drug by brain-associated enzymes occurs.
Resumo:
Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
Resumo:
The primary questions addressed in this paper are the following: what are the factors that affect students’ adoption of an e-learning system and what are the relationships among these factors? This paper investigates and identifies some of the major factors affecting students’ adoption of an e-learning system in a university in Jordan. E-learning adoption is approached from the information systems acceptance point of view. This suggests that a prior condition for learning effectively using e-learning systems is that students must actually use them. Thus, a greater knowledge of the factors that affect IT adoption and their interrelationships is a pre-cursor to a better understanding of student acceptance of e-learning systems. In turn, this will help and guide those who develop, implement, and deliver e-learning systems. In this study, an extended version of the Technology Acceptance Model (TAM) was developed to investigate the underlying factors that influence students’ decisions to use an e-learning system. The TAM was populated using data gathered from a survey of 486 undergraduate students using the Moodle based e-learning system at the Arab Open University. The model was estimated using Structural Equation Modelling (SEM). A path model was developed to analyze the relationships between the factors to explain students’ adoption of the e-learning system. Whilst findings support existing literature about prior experience affecting perceptions, they also point to surprising group effects, which may merit future exploration.
Resumo:
Quercetin is a naturally occurring polyphenol compound present in grapes, red wine, tea, apples and some vegetables. Like other flavonoids, it has been found to have antioxidant activity in studies in vitro, although there is still much debate about the bioavailability of flavonoids in the diet and their in vivo antioxidant activity. In general, it is thought that the antioxidant efficiency of polyphenols increases with increasing hydroxylation of the rings, but there have been few studies of other substitutions. We have prepared several derivatives of quercetin, to test the effect of modification on their antioxidant potential. Sodium salts of quercetin-5-sulfonate and quercetin-5,8-sulfonate, and transition metal complexes of quercetin-5-sulfonate were analysed for their total antioxidant potential using the FRAP assay, and compared to unmodified quercetin. It was found that quercetin-5-sulfonate complexes with Zn, Cu(II), Fe(II) and Mg were all significantly better antioxidants than quercetin, quercetin-5-sulfonate was comparable to quercetin, whereas the sodium salt of quercetin-5,8-sulfonate had a decreased total antioxidant potential. Kinetic studies of the FRAP reaction showed no significant differences between quercitin and any of the derivatives. The reaction of all the quercetins in the FRAP assay was found to be slower to reach completion than ascorbate, and appeared to have biphasic characteristics. These results suggest that transition metal ions may facilitate the transfer of electrons from the polyphenol ring system to the oxidant, while substitution with S03 is electron-withdrawing and destabilizes the ring system. This is important both for understanding the antioxidant ability of flavonoids, and for the design of novel antioxidant compounds. Further work is being carried out to assess the ability of the quercetin complexes to protect cultured cells from oxidative stress.
Resumo:
A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.
Resumo:
The authors present a model of the multilevel effects of diversity on individual learning performance in work groups. For ethnically diverse work groups, the model predicts that group diversity elicits either positive or negative effects on individual learning performance, depending on whether a focal individual’s ethnic dissimilarity from other group members is high or low. By further considering the societal status of an individual’s ethnic origin within society (Anglo versus non-Anglo for our U.K. context), the authors hypothesize that the model’s predictions hold more strongly for non-Anglo group members than for Anglo group members. We test this model with data from 412 individuals working on a 24-week business simulation in 87 four- to seven-person groups with varying degrees of ethnic diversity. Two of the three hypotheses derived from the model received full support and one hypothesis received partial support. Implications for theory development, methods, and practice in applied group diversity research are discussed.
Resumo:
The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.
Resumo:
This paper reports the evaluation of the effectiveness of incentives (viz. points and prizes) and of peer-group organisers ('older people's champions') in the outcomes of a health-improvement programme for people aged 50 + years in a multi-ethnic district of the West Midlands, England. Health promotion activities Were provided, and adherence, outcome variables and barriers to adherence were assessed over six months, using a `passport' format. Those aged in the fifties and of Asian origin Were under represented, but people of Afro-Caribbean origin were well represented and proportionately most likely to stay in the project. Those of greater age and With more illness were most likely to drop out. There were significant improvements in exercise, diet and the uptake of influenza vaccines and eyesight tests, but slighter improvements in wellbeing. Positive outcomes related to the incentives and to liking the format. The number of reported barriers was associated with lower involvement and lack of change, as was finding activities too difficult, the level of understanding, and transport and mobility problems, but when these were controlled, age did not predict involvement. Enjoying the scheme was related to positive changes, and this was associated with support from the older people's champions.
Resumo:
We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.
Resumo:
Two experiments are reported which investigate the influence of ingroup and outgroup minority influence where group membership was determined according to a trivial dimension. The results of the first experiment replicate an earlier study and show that an ingroup minority has significantly more influence than an outgroup minority. In the second study the connotations associated with membership of the ingroup and outgroup (positive/negative) were experimentally manipulated. When ingroup/outgroup membership was associated with a positive/negative image respectively, the ingroup minority had the most influence. However, when ingroup/outgroup membership was associated with a negative/positive image, as predicted, an outgroup minority had more influence than an ingroup minority. These results are interpreted as supporting an intergroup analysis of minority influence processes.
Resumo:
Extending the growing interest in affect in work groups, we propose that groups with distributed information make higher quality decisions when they are in a negative rather than a positive mood, but that these effects are moderated by group members' trait negative affect. In support of this hypothesis, an experiment (N = 175 groups) showed that positive mood led to lower quality decisions than did negative or neutral moods when group members were low in trait negative affect, whereas such mood effects were not observed in groups higher in trait negative affect. Mediational analysis based on behavioral observations of group process confirmed that group information elaboration mediated this effect. These results provide an important caveat on the benefits of positive moods in work groups, and suggest that the study of trait × state affect interactions is an important avenue for future research.
Resumo:
We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.