39 resultados para electricity distribution network
em Aston University Research Archive
Resumo:
Dynamic asset rating (DAR) is one of the number of techniques that could be used to facilitate low carbon electricity network operation. Previous work has looked at this technique from an asset perspective. This paper focuses, instead, from a network perspective by proposing a dynamic network rating (DNR) approach. The models available for use with DAR are discussed and compared using measured load and weather data from a trial network area within Milton Keynes in the central area of the U.K. This paper then uses the most appropriate model to investigate, through a network case study, the potential gains in dynamic rating compared to static rating for the different network assets - transformers, overhead lines, and cables. This will inform the network operator of the potential DNR gains on an 11-kV network with all assets present and highlight the limiting assets within each season.
Resumo:
Dynamic asset rating is one of a number of techniques that could be used to facilitate low carbon electricity network operation. This paper focusses on distribution level transformer dynamic rating under this context. The models available for use with dynamic asset rating are discussed and compared using measured load and weather conditions from a trial Network area within Milton Keynes. The paper then uses the most appropriate model to investigate, through simulation, the potential gains in dynamic rating compared to static rating under two transformer cooling methods to understand the potential gain to the Network Operator.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.
Resumo:
In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.
Resumo:
The cost and limited flexibility of traditional approaches to 11kV network reinforcement threatens to constrain the uptake of low carbon technologies. Ofgem has released £500m of funding for DNOs to trial innovative techniques and share the learning with the rest of the industry. One of the techniques under study is the addition of Energy Storage at key substations to the network to help with peak load lopping. This paper looks in detail at the sizing algorithm for use in the assessment of alternatives to traditional reinforcement and investigates a method of sizing a battery for use on a Network taking into account load growth, capacity fade and battery lifecycle issues. A further complication to the analysis is the method of operation of the battery system and how this affects the Depth of Discharge (DoD). The proposed method is being trialled on an area of 11kV network in Milton Keynes Central area and the simulation results are presented in this paper.
Resumo:
This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.
Resumo:
This paper discusses the potentiality of reconfiguring distribution networks into islanded Microgrids to reduce the network infrastructure reinforcement requirement and incorporate various dispersed energy resources. The major challenge would be properly breaking down the network and its resultant protection and automation system changes. A reconfiguration method is proposed based on allocation of distributed generation resources to fulfil this purpose, with a heuristic algorithm. Cost/reliability data is required for the next stage tasks to realise a case study of a particular network.
Resumo:
This paper reports work of a MEng student final year project, which looks in detail at the impacts that distributed generation can have on existing low-voltage distribution network protection systems. After a review of up-to-date protection issues, this paper will investigate several key issues that face distributed generation connections when it comes to network protection systems. These issues include, the blinding of protection systems, failure to automatically reclose, unintentional islanding, loss of mains power and the false tripping of feeders. Each of these problems impacts on protection systems in its own way. This study aims to review and investigate these problems via simulation demonstrations on one representative network to recommend solutions to practices.
Resumo:
The realisation of an eventual low-voltage (LV) Smart Grid with a complete communication infrastructure is a gradual process. During this evolution the protection scheme of distribution networks should be continuously adapted and optimised to fit the protection and cost requirements at the time. This paper aims to review practices and research around the design of an effective, adaptive and economical distribution network protection scheme. The background of this topic is introduced and potential problems are defined from conventional protection theories and new Smart Grid technologies. Challenges are identified with possible solutions defined as a pathway to the ultimate flexible and reliable LV protection systems.
Resumo:
Automatic load transfer (ALT) on the 11 kV network is the process by which circuit breakers on the network are switched to form open points in order to feed load from different primary substations. Some of the potential benefits that may be gained from dynamically using ALT include maximising utilisation of existing assets, voltage regulation and reduced losses. One of the key issues, that has yet to be properly addressed in published research, is how to validate that the modelled benefits really exist. On an 11 kV distribution network where the load is continually changing and the load on each distribution substation is unlikely to be monitored - reduction in losses from moving the normally open point is particularly difficult to prove. This study proposes a method to overcome this problem and uses measured primary feeder data from two parts of the Western Power Distribution 11 kV Network under different configurations. The process of choosing the different configurations is based on a heuristic modelling method of locating minimum voltages to help reduce losses.
Resumo:
We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
This work is part of a bigger project which aims to research the potential development of commercial opportunities for the re-use of batteries after their use in low carbon vehicles on an electricity grid or microgrid system. There are three main revenue streams (peak load lopping on the distribution Network to allow for network re-enforcement deferral, National Grid primary/ secondary/ high frequency response, customer energy management optimization). These incomes streams are dependent on the grid system being present. However, there is additional opportunity to be gained from also using these batteries to provide UPS backup when the grid is no longer present. Most UPS or ESS on the market use new batteries in conjunction with a two level converter interface. This produces a reliable backup solution in the case of loss of mains power, but may be expensive to implement. This paper introduces a modular multilevel cascade converter (MMCC) based ESS using second-life batteries for use on a grid independent industrial plant without any additional onsite generator as a potentially cheaper alternative. The number of modules has been designed for a given reliability target and these modules could be used to minimize/eliminate the output filter. An appropriate strategy to provide voltage and frequency control in a grid independent system is described and simulated under different disturbance conditions such as load switching, fault conditions or a large motor starting. A comparison of the results from the modular topology against a traditional two level converter is provided to prove similar performance criteria. The proposed ESS and control strategy is an acceptable way of providing backup power in the event of loss of grid. Additional financial benefit to the customer may be obtained by using a second life battery in this way.
Resumo:
Today, the question of how to successfully reduce supply chain costs whilst increasing customer satisfaction continues to be the focus of many firms. It is noted in the literature that supply chain automation can increase flexibility whilst reducing inefficiencies. However, in the dynamic and process driven environment of distribution, there is the absence of a cohesive automation approach to guide companies in improving network competitiveness. This paper aims to address the gap in the literature by developing a three-level framework automation application approach with the assistance of radio frequency identification (RFID) technology and returnable transport equipment (RTE). The first level considers the automation of data retrieval and highlights the benefits of RFID. The second level consists of automating distribution processes such as unloading and assembling orders. As the labour is reduced with the introduction of RFID enabled robots, the balance between automation and labour is discussed. Finally, the third level is an analysis of the decision-making process at network points and the application of cognitive automation to objects. A distribution network scenario is formed and used to illustrate network reconfiguration at each level. The research pinpoints that RFID enabled RTE offers a viable tool to assist supply chain automation. Further research is proposed in particular, the area of cognitive automation to aide with decision-making.