7 resultados para electrical and Magnetic measurements

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a d.c. SQUID coupled to a second order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100 ms (P100M). At the time this component was present the response to half-field stimulation consisted of an outgoing magnetic field contralateral and extending to the midline. When the left half field was stimulated the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correctly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a dc-SQUID coupled to a second-order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100ms (P100M). At the same time this component was present the reponse to half-field stimulation consisted of an outgoing field contralateral and extending to the midline. When the left half-field was stimulates the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correltly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In analogy to a common synthesis of 1-substituted 5-H tetrazoles (Tetrahedron Lett. 36 (1995)1759; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 11 (1985) 1521; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 1 (1991) 66; BGU, Belarus. Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 1 (1992) 73), the new bidentate ligand 1,2-bis(tetrazol-1-yl)ethane [endi] was synthesized and characterized by X-ray diffraction, NMR, IR and UV–Vis spectroscopy. By using iron(II) tetrafluoroborate hexahydrate the complexation with this ligand yields a 1-dimensional linear coordination polymer similar to the recently published chain compound (Inorg. Chem. 39 (2000) 1891) exhibiting a thermally induced spin-crossover phenomenon. Similar to the 1,2-bis(tetrazol-1-yl)propane-bridged compound, our 1,2-bis(tetrazol-1-yl)ethane-bridged compound shows a gradual spin transition, but the spin-crossover temperature T1/2≈140 K is found to be 10 K above the other T1/2. The T1/2 was determined by temperature-dependent 57Fe-Mössbauer, far FT-IR and UV–Vis spectroscopy as well as by temperature-dependent magnetic susceptibility measurements. Single crystals of the complex were grown in situ from a solution of the ligand and iron(II) tetrafluoroborate. The X-ray structure determinations of both the high spin as well as the low spin state of the compound revealed a solid state structure, which is comparable to that of catena-[Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 (Inorg. Chem. 39 (2000) 1891; 2nd TMR-TOSS Meeting, 4th Spin Crossover Family Meeting, Lufthansa Training Center, Seeheim/Germany, April 30–May 2, 1999). Both the 1,2-bis(tetrazol-1-yl)propane-bridged and our compound do not show a thermal hysteresis effect (J. Am. Chem. Soc. 115 (1993) 9810; Inorg. Chim. Acta 37 (1979) 169; Chem. Phys. Lett. 93 (1982) 567). The synthesis of the complex described in the experimental section yielded a fine powdered product being poorly soluble in most common solvents. The single crystal measurements were done with crystals obtained by various diffusion methods. Most of them yielded either thin needles or small hexagonal prism crystals depending on the specific conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two blue (450 nm) light–emitting diodes (LED), which only differ in top p-GaN layer growth conditions, were comparatively investigated. I-V, C-V, TLM, Electroluminescence (EL) and Photoluminescence (PL) techniques were applied to clarify a correlation between MOCVD carrier gas and internal properties. The A-structure grown in the pure N2 environment demonstrated better parameters than the B-structure grown in the N2/H2 (1:1) gas mixture. The mixed growth atmosphere leaded to an increase of sheet resistances of p-GaN layer. EL and PL measurements confirmed the advantage of the pure N2 utilization, and C(VR) measurement pointed the increase of static charge concentration near the p-GaN interface in the B structure.