6 resultados para elect-displacement strength factor
em Aston University Research Archive
Resumo:
This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .
Resumo:
Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.
Resumo:
Relocation, an intraorganizational geographical transfer, can be used for human resource development (HRD) because of the positive developmental effects it can induce. It is, thus, important for HRD professionals to understand the implications of relocation to ensure it is used appropriately and effectively as an HRD technique. Research on relocation is abundant but presently lacks integration. This article introduces the Four-Factor Taxonomy of Relocation Outcomes, which summarizes, organizes, and guides research in this area. The taxonomy provides researchers with four dimensions along which to consistently classify relocation outcomes: valence (positive vs. negative), duration (length of effect), magnitude (strength of effect), and quality (type of effect). The article concludes with a discussion of implications for HRD practitioners and researchers.
Resumo:
The influence of ionic strength and of the chemical nature of cations on the protein-protein interactions in ovalbumin solution was studied using small-angle X-ray and neutron scattering (SAXS/SANS). The globular protein ovalbumin is found in dimeric form in solutions as suggested by SANS/SAXS experiments. Due to the negative charge of the proteins at neutral pH, the protein-protein interactions without any salt addition are dominated by electrostatic repulsion. A structure factor related to screened Coulombic interactions together with an ellipsoid form factor was used to fit the scattering intensity. A monovalent salt (NaCl) and a trivalent salt (YCl3) were used to study the effect of the chemical nature of cations on the interaction in protein solutions. Upon addition of NaCl, with ionic strength below that of physiological conditions (150 mM), the effective interactions are still dominated by the surface charge of the proteins and the scattering data can be understood using the same model. When yttrium chloride was used, a reentrant condensation behavior, i.e., aggregation and subsequent redissolution of proteins with increasing salt concentration, was observed. SAXS measurements reveal a transition from effective repulsion to attraction with increasing salt concentration. The solutions in the reentrant regime become unstable after long times (several days). The results are discussed and compared with those from bovine serum albumin (BSA) in solutions.
Resumo:
We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.
Resumo:
A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.