2 resultados para elastic–viscoplastic soil model
em Aston University Research Archive
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
Soil erosion is one of the most pressing issues facing developing countries. The need for soil erosion assessment is paramount as a successful and productive agricultural base is necessary for economic growth and stability. In Ghana, a country with an expanding population and high potential for economic growth, agriculture is an important resource; however, most of the crop production is restricted to low technology shifting cultivation agriculture. The high intensity seasonal rainfall coincides with the early growing period of many of the crops meaning that plots are very susceptible to erosion, especially on steep sided valleys in the region south of Lake Volta. This research investigated the processes of soil erosion by rainfall with the aim of producing a sediment yield model for a small semi-agricultural catchment in rural Ghana. Various types of modelling techniques were considered to discover those most applicable to the sub-tropical environment of Southern Ghana. Once an appropriate model had been developed and calibrated, the aim was to look at how to enable the scaling up of the model using sub-catchments to calculate sedimentation rates of Lake Volta. An experimental catchment was located in Ghana, south west of Lake Volta, where data on rainstorms and the associated streamflow, sediment loads and soil data (moisture content, classification and particle size distribution) was collected to calibrate the model. Additional data was obtained from the Soil Research Institute in Ghana to explore calibration of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1978) for Ghanaian soils and environment. It was shown that the USLE could be successfully converted to provide meaningful soil loss estimates in the Ghanaian environment. However, due to experimental difficulties, the proposed theory and methodology of the sediment yield model could only be tested in principle. Future work may include validation of the model and subsequent scaling up to estimate sedimentation rates in Lake Volta.