13 resultados para edge contrast
em Aston University Research Archive
Resumo:
We have shown previously that a template model for edge perception successfully predicts perceived blur for a variety of edge profiles (Georgeson, 2001 Journal of Vision 1 438a; Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54). This study concerns the perceived contrast of edges. Our model spatially differentiates the luminance profile, half-wave rectifies this first derivative, and then differentiates again to create the edge's 'signature'. The spatial scale of the signature is evaluated by filtering it with a set of Gaussian derivative operators. This process finds the correlation between the signature and each operator kernel at each position. These kernels therefore act as templates, and the position and scale of the best-fitting template indicate the position and blur of the edge. Our previous finding, that reducing edge contrast reduces perceived blur, can be explained by replacing the half-wave rectifier with a smooth, biased rectifier function (May and Georgeson, 2003 Perception 32 388; May and Georgeson, 2003 Perception 32 Supplement, 46). With the half-wave rectifier, the peak template response R to a Gaussian edge with contrast C and scale s is given by: R=Cp-1/4s-3/2. Hence, edge contrast can be estimated from response magnitude and blur: C=Rp1/4s3/2. Use of this equation with the modified rectifier predicts that perceived contrast will decrease with increasing blur, particularly at low contrasts. Contrast-matching experiments supported this prediction. In addition, the model correctly predicts the perceived contrast of Gaussian edges modified either by spatial truncation or by the addition of a ramp.
Resumo:
A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision Research, 47, 1721-1731]. Thus, when we allow for the visual system's insensitivity to very shallow luminance gradients, our multi-scale model can be extended to edge coding over a wide range of contrasts and blurs. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
In many models of edge analysis in biological vision, the initial stage is a linear 2nd derivative operation. Such models predict that adding a linear luminance ramp to an edge will have no effect on the edge's appearance, since the ramp has no effect on the 2nd derivative. Our experiments did not support this prediction: adding a negative-going ramp to a positive-going edge (or vice-versa) greatly reduced the perceived blur and contrast of the edge. The effects on a fairly sharp edge were accurately predicted by a nonlinear multi-scale model of edge processing [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision], in which a half-wave rectifier comes after the 1st derivative filter. But we also found that the ramp affected perceived blur more profoundly when the edge blur was large, and this greater effect was not predicted by the existing model. The model's fit to these data was much improved when the simple half-wave rectifier was replaced by a threshold-like transducer [May, K. A. & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47, 1705-1720.]. This modified model correctly predicted that the interaction between ramp gradient and edge scale would be much larger for blur perception than for contrast perception. In our model, the ramp narrows an internal representation of the gradient profile, leading to a reduction in perceived blur. This in turn reduces perceived contrast because estimated blur plays a role in the model's estimation of contrast. Interestingly, the model predicts that analogous effects should occur when the width of the window containing the edge is made narrower. This has already been confirmed for blur perception; here, we further support the model by showing a similar effect for contrast perception. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Aim: Contrast sensitivity (CS) provides important information on visual function. This study aimed to assess differences in clinical expediency of the CS increment-matched new back-lit and original paper versions of the Melbourne Edge Test (MET) to determine the CS of the visually impaired. Methods: The back-lit and paper MET were administered to 75 visually impaired subjects (28-97 years). Two versions of the back-lit MET acetates were used to match the CS increments with the paper-based MET. Measures of CS were repeated after 30 min and again in the presence of a focal light source directed onto the MET. Visual acuity was measured with a Bailey-Lovie chart and subjects rated how much difficulty they had with face and vehicle recognition. Results: The back-lit MET gave a significantly higher CS than the paper-based version (14.2 ± 4.1 dB vs 11.3 ± 4.3 dB, p < 0.001). A significantly higher reading resulted with repetition of the paper-based MET (by 1.0 ± 1.7 dB, p < 0.001), but this was not evident with the back-lit MET (by 0.1 ± 1.4 dB, p = 0.53). The MET readings were increased by a focal light source, in both the back-lit (by 0.3 ± 0.81, p < 0.01) and paper-based (1.2 ± 1.7, p < 0.001) versions. CS as measured by the back-lit and paper-based versions of the MET was significantly correlated to patients' perceived ability to recognise faces (r = 0.71, r = 0.85 respectively; p < 0.001) and vehicles (r = 0.67, r = 0.82 respectively; p < 0.001), and with distance visual acuity (both r =-0.64; p < 0.001). Conclusions: The CS increment-matched back-lit MET gives higher CS values than the old paper-based test by approximately 3 dB and is more repeatable and less affected by external light sources. Clinically, the MET score provides information on patient difficulties with visual tasks, such as recognising faces. © 2005 The College of Optometrists.
Resumo:
Background: The Melbourne Edge Test (MET) is a portable forced-choice edge detection contrast sensitivity (CS) test. The original externally illuminated paper test has been superseded by a backlit version. The aim of this study was to establish normative values for age and to assess change with visual impairment. Method: The MET was administered to 168 people with normal vision (18-93 years old) and 93 patients with visual impairment (39-97 years old). Distance visual acuity (VA) was measured with a log MAR chart. Results: In those eyes without disease, MET CS was stable until the age of 50 years (23.8 ± .7 dB) after which it decreased at a rate of ≈1.5 dB per decade. Compared with normative values, people with low vision were found to have significantly reduced CS, which could not be totally accounted for by reduced VA. Conclusions: The MET provides a quick and easy measure of CS, which highlights a reduction in visual function that may not be detectable using VA measurements. © 2004 The College of Optometrists.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We (Vision Research 38 (1998) 2108) have previously shown how such distortions in perceived edge blur may be accounted for by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. If the form of the transducer is fixed (independent of contrast) for a given speed, then a strong prediction of the model is that motion sharpening should increase with increasing contrast. We measured the sharpening of periodic patterns over a large range of contrasts, blur widths and speeds. The results indicate that whilst sharpening increases with speed it is practically invariant with contrast. The contrast invariance of motion sharpening is not explained by an early, static compressive non-linearity alone. However, several alternative explanations are also inconsistent with these results. We show that if a dynamic contrast gain control precedes the static non-linear transducer then motion sharpening, its speed dependence, and its invariance with contrast, can be predicted with reasonable accuracy. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We have previously shown how such distortions in perceived edge blur may be explained by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. To test this model further, we measured the sharpening of drifting, periodic patterns over a large range of contrasts, blur widths, and speeds Human Vision. The results indicate that, while sharpening increased with speed, it was practically invariant with contrast. This contrast invariance cannot be explained by a fixed compressive nonlinearity since that predicts almost no sharpening at low contrasts.We show by computational modelling of spatiotemporal responses that, if a dynamic contrast gain control precedes the static nonlinear transducer, then motion sharpening, its speed dependence, and its invariance with contrast can be predicted with reasonable accuracy.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
Edge blur is an important perceptual cue, but how does the visual system encode the degree of blur at edges? Blur could be measured by the width of the luminance gradient profile, peak ^ trough separation in the 2nd derivative profile, or the ratio of 1st-to-3rd derivative magnitudes. In template models, the system would store a set of templates of different sizes and find which one best fits the `signature' of the edge. The signature could be the luminance profile itself, or one of its spatial derivatives. I tested these possibilities in blur-matching experiments. In a 2AFC staircase procedure, observers adjusted the blur of Gaussian edges (30% contrast) to match the perceived blur of various non-Gaussian test edges. In experiment 1, test stimuli were mixtures of 2 Gaussian edges (eg 10 and 30 min of arc blur) at the same location, while in experiment 2, test stimuli were formed from a blurred edge sharpened to different extents by a compressive transformation. Predictions of the various models were tested against the blur-matching data, but only one model was strongly supported. This was the template model, in which the input signature is the 2nd derivative of the luminance profile, and the templates are applied to this signature at the zero-crossings. The templates are Gaussian derivative receptive fields that covary in width and length to form a self-similar set (ie same shape, different sizes). This naturally predicts that shorter edges should look sharper. As edge length gets shorter, responses of longer templates drop more than shorter ones, and so the response distribution shifts towards shorter (smaller) templates, signalling a sharper edge. The data confirmed this, including the scale-invariance implied by self-similarity, and a good fit was obtained from templates with a length-to-width ratio of about 1. The simultaneous analysis of edge blur and edge location may offer a new solution to the multiscale problem in edge detection.
Resumo:
This thesis presents a study of how edges are detected and encoded by the human visual system. The study begins with theoretical work on the development of a model of edge processing, and includes psychophysical experiments on humans, and computer simulations of these experiments, using the model. The first chapter reviews the literature on edge processing in biological and machine vision, and introduces the mathematical foundations of this area of research. The second chapter gives a formal presentation of a model of edge perception that detects edges and characterizes their blur, contrast and orientation, using Gaussian derivative templates. This model has previously been shown to accurately predict human performance in blur matching tasks with several different types of edge profile. The model provides veridical estimates of the blur and contrast of edges that have a Gaussian integral profile. Since blur and contrast are independent parameters of Gaussian edges, the model predicts that varying one parameter should not affect perception of the other. Psychophysical experiments showed that this prediction is incorrect: reducing the contrast makes an edge look sharper; increasing the blur reduces the perceived contrast. Both of these effects can be explained by introducing a smoothed threshold to one of the processing stages of the model. It is shown that, with this modification,the model can predict the perceived contrast and blur of a number of edge profiles that differ markedly from the ideal Gaussian edge profiles on which the templates are based. With only a few exceptions, the results from all the experiments on blur and contrast perception can be explained reasonably well using one set of parameters for each subject. In the few cases where the model fails, possible extensions to the model are discussed.
Resumo:
A view has emerged within manufacturing and service organizations that the operations management function can hold the key to achieving competitive edge. This has recently been emphasized by the demands for greater variety and higher quality which must be set against a background of increasing cost of resources. As nations' trade barriers are progressively lowered and removed, so producers of goods and service products are becoming more exposed to competition that may come from virtually anywhere around the world. To simply survive in this climate many organizations have found it necessary to improve their manufacturing or service delivery systems. To become real ''winners'' some have adopted a strategic approach to operations and completely reviewed and restructured their approach to production system design and operations planning and control. The articles in this issue of the International journal of Operations & Production Management have been selected to illustrate current thinking and practice in relation to this situation. They are all based on papers presented to the Sixth International Conference of the Operations Management Association-UK which was held at Aston University in June 1991. The theme of the conference was "Achieving Competitive Edge" and authors from 15 countries around the world contributed to more than 80 presented papers. Within this special issue five topic areas are addressed with two articles relating to each. The topics are: strategic management of operations; managing change; production system design; production control; and service operations. Under strategic management of operations De Toni, Filippini and Forza propose a conceptual model which considers the performance of an operating system as a source of competitive advantage through the ''operation value chain'' of design, purchasing, production and distribution. Their model is set within the context of the tendency towards globalization. New's article is somewhat in contrast to the more fashionable literature on operations strategy. It challenges the validity of the current idea of ''world-class manufacturing'' and, instead, urges a reconsideration of the view that strategic ''trade-offs'' are necessary to achieve a competitive edge. The importance of managing change has for some time been recognized within the field of organization studies but its relevance in operations management is now being realized. Berger considers the use of "organization design", ''sociotechnical systems'' and change strategies and contrasts these with the more recent idea of the ''dialogue perspective''. A tentative model is suggested to improve the analysis of different strategies in a situation specific context. Neely and Wilson look at an essential prerequisite if change is to be effected in an efficient way, namely product goal congruence. Using a case study as its basis, their article suggests a method of measuring goal congruence as a means of identifying the extent to which key performance criteria relating to quality, time, cost and flexibility are understood within an organization. The two articles on production systems design represent important contributions to the debate on flexible production organization and autonomous group working. Rosander uses the results from cases to test the applicability of ''flow groups'' as the optimal way of organizing batch production. Schuring also examines cases to determine the reasons behind the adoption of ''autonomous work groups'' in The Netherlands and Sweden. Both these contributions help to provide a greater understanding of the production philosophies which have emerged as alternatives to more conventional systems -------for intermittent and continuous production. The production control articles are both concerned with the concepts of ''push'' and ''pull'' which are the two broad approaches to material planning and control. Hirakawa, Hoshino and Katayama have developed a hybrid model, suitable for multistage manufacturing processes, which combines the benefits of both systems. They discuss the theoretical arguments in support of the system and illustrate its performance with numerical studies. Slack and Correa's concern is with the flexibility characteristics of push and pull material planning and control systems. They use the case of two plants using the different systems to compare their performance within a number of predefined flexibility types. The two final contributions on service operations are complementary. The article by Voss really relates to manufacturing but examines the application of service industry concepts within the UK manufacturing sector. His studies in a number of companies support the idea of the ''service factory'' and offer a new perspective for manufacturing. Harvey's contribution by contrast, is concerned with the application of operations management principles in the delivery of professional services. Using the case of social-service provision in Canada, it demonstrates how concepts such as ''just-in-time'' can be used to improve service performance. The ten articles in this special issue of the journal address a wide range of issues and situations. Their common aspect is that, together, they demonstrate the extent to which competitiveness can be improved via the application of operations management concepts and techniques.