4 resultados para economic profitability

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we apply an index number approach to allow for cross sectional comparisons of relative profitability, productivity and price performance of the regulated Water and Sewerage companies (WaSCs) in England and Wales during the years 1991-2008. In order to better analyse the impact of regulation on WaSC performance, we decompose actual economic profits into spatial multilateral Fisher productivity (TFP) index, the inverse of which is demonstrated to be a regulatory excess cost index that measures the deviation of a firm’s actual costs from benchmark costs, and a newly developed regulatory total price performance (TPP) index, which measures the excess of regulated revenues relative to benchmark costs. Increases (decreases) in regulatory price performance are indicative of the loosening (tightening) of price cap regulation. Moreover, we also show that the relationship between actual economic profitability, regulatory excess costs and regulatory price performance indices can be used to categorize regulatory price caps as “weak”, “powerful” or “catch-up promoting”. The results indicated that throughout the entire 1991-2008 period, price caps were never “powerful”, in the sense that they required less productive firms to immediately and fully catch-up to the most productive firm to regain economic profitability. More specifically, during the years 1991-2000 price caps were “weak” as prices were high enough for the firms to achieve economic profits despite their low productivity levels. However, after 2001 prices became “catch up promoting” as they required less productive companies to eliminate at least some excess costs in order to eliminate economic losses. Finally, we emphasize that as our results also clearly demonstrated a much closer alignment between allowed revenues and benchmark costs after 2001, Ofwat’s approach during this period was not only appropriate, but should also be continued in the 2009 price review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims to analyse the impact of regulation in the financial performance of the Water and Sewerage companies (WaSCs) in England and Wales over the period 1991–2008. In doing so, a panel index approach is applied across WaSCs over time to decompose unit-specific index number-based profitability growth as a function of the profitability, productivity and price performance growth achieved by benchmark firms, and the catch up to the benchmark firm achieved by less productive firms. The results indicated that after 2000 there is a steady decline in average price performance, while productivity improves resulting in a relatively stable economic profitability. It is suggested that the English and Welsh water regulator is now more focused on passing productivity benefits to consumers, and maintaining stable profitability than it was in earlier regulatory periods. This technique is of great interest for regulators to evaluate the effectiveness of regulation and companies to identify the determinants of profit change and improve future performance, even if sample sizes are limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the divergent effects of institutional reforms on firm's productivity and profits. To assess this empirically, we investigate the impact of various components of economic liberalisation on the performance of firms from Central and Eastern European countries from 1998 to 2006. The impact of reforms on profitability vis-à-vis productivity differs, which we interpret as an indication that profitability is an ambiguous measure of performance: one needs to distinguish between unproductive rents and productivity-based quasi-rents. We find that competition-enhancing liberalisation measures have more impact on state owned firms as compared with domestic and foreign owned firms. © 2012 Association for Comparative Economic Studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.