5 resultados para eastern margin of the Qinghai-Tibetan Plateau
em Aston University Research Archive
Resumo:
Variations in hypothallus width were studied in relation to radial growth in the lichen Rhizocarpon geographicum (L.) DC. in South Gwynedd, Wales, UK. Variations were present both within and between thalli and in successive three-month growth periods, but there was no significant variation associated with thallus size. In individual thalli, there were increases and reductions in hypothallus width in successive three-month growth periods attributable to hypothallus growth and changes at the margin of the areolae. Total radial growth over 18 months was positively correlated with initial hypothallus width. These results suggest: 1) individual thalli of similar size vary considerably in hypothallus width, 2) fluctuations in the location of the margin of the areolae in successive three month periods is an important factor determining this variability, 3) hypothallus width predicts subsequent radial growth over 18 months, and 4) variation in hypothallus; width is a factor determining between thallus variability in radial growth rates in yellow-green species of Rhizocarpon.
Resumo:
One of the most widely distributed species of crustose lichen is Rhizocarpon geographicum. This unusual organism comprises yellow-green 'areolae' growing on the surface of a non-lichenised hypothallus that extends beyond the margin of the areolae to form a ring. This article describes the general structure of R. geographicum, how the areolae and hypothallus are formed, why the species grows so slowly, and whether it can inhibit its neighbours by releasing allelochemicals.
Resumo:
Three metamorphic aureoles around intrusions of the Caledonian 'Newer Granite' suite are described. Each represents a different orogenic environment. The Strontian complex is intruded into sillimanite grade Moinian metasediments at the core of the orogen. The aureole comprises three zones; a transitional muscovite + sillimanite + K-feldspar zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. Contact migmatization occurs in the inner part of the aureole. Zoning profiles from garnets in both regional and aureole assemblages show retrograde Mn-rich rims. Fe and Mg compositions are re-equilibrated to contact conditions. Apparent re-equilibration of Ca compositions results from increasingly ideal solid solution behaviour of Ca in plagioclase and garnet with increasing temperature. Temperatures of 690°C at 4.1 kbar (XH2O = 0.53) are estimated in the cordierite + K-feldspar zone, dropping to 630°C (XH2O = 0.69) at the sillimanite + K-feldspar isograd. The zones increase in width to the east, influenced by the regional thermal gradient at the time of intrusion. The timer-scale of the contact event, t2, relative to the regional, tl, - is estimated as t2/t1 = 101.1+ -0.7 and is consistent with Intrusion at an early stage of regional uplift and cooling. The Foyers complex intrudes Moinian rocks at a higher structural level. Regional assemblages range from garnet to sillimanite grade. Three contact zones are recognised; a sillimanite zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. The limit of the aureole is marked by the breakdown of garnet which shows disequilibrium, both texturally, and in complex zoning profiles, within it. Temperatures of 660°C at 3.9 kbar (XH20 = 0.14) are estimated in the cordierite + K-feldspar zone? The Dalbeattie complex is at the margin of the orogen, intruded into low grade Silurian metasediments. Two zones are recognised; a biotite zone and an inner hornblende zone. Cordierite and diopside are present in the inner zone.
Resumo:
This thesis describes the geology of a Lower Palaeozoic terrain, situated west of the town of Fishguard, SW Dyfed, Wales. The area is dominated by the Fishguard Volcanic Complex (Upper Llanvirn), and sediments that range in age from the Middle Cambrian to the Lower Llandeilo. The successions represent an insight into sedimentation and volcanism for c. 100 Ma. along the south-western margin of the Lower Palaeozoic Welsh Basin. The stratigraphy of the sedimentary sequence has been completely revised and the existing volcanostratigraphy modified. The observed complexity of the stratigraphy is primarily the consequence of Caldedonide deformation which resulted in large scale repetition. Fold-thrust tectonics dominates the structural style of the area. Caledonide trending (NE-SW) cross-faults complicate preexisting structures. Middle Cambrian (?) sedimentation is documented by shallow marine clastics and red shales deposited within tidal - subtidal environments. Upper Cambrian sedimentation was dominated by shallow marine `storm' and `fair weather' sedimentation within a muddy shelf environment. Shallow marine conglomerates and heterolithic intertidal siliciclastics mark the onset of Ordovician sedimentation during the lower Arenig transgression. Mid-Arenig sediments reflect deposits influenced by storm, fair-weather and wave related processes in various shallow marine environments, including; shoreface, inner shelf, shoaling bar, and deltaic. Graptolitic marine shales were deposited from the upper mid-Arenig through to the lower Llandeilo; during which time sediments accumulated by pelagic processes and fine grained turbidites. The varied nature of sedimentation reflects both localised change within the depositional system and the influence of larger regional eustatic events. Ordovician subaqueous volcanic activity produced thick accumulations of lavas, pyroclastics, hydroclastics, and hyaloclastics. The majority of volcanism was effusive in nature, erupted below the Pressure Compensation Level. Basaltic volcanism was characterised by pillowed lavas and tube networks, whilst sheet-flow lavas, pillow breccias and minor hyaloclastites developed locally. Silicic volcanism was dominated by rhyolitic clastics of various affinities, although coherent silicic obsidian lavas, sheet-flow lavas and pyroclastics developed. Hypabyssal intrusives of variable composition and habit occur throughout the volcanic successions. Low-grade regional metamorphism has variably affected the area, conditions of the prehnite-pumpellyite and greenschist facies having been attained. Numerous secondary phases developed in response to the conditions imposed, which collectively indicate that P-T conditions were of low-pressure facies series in the range P= 1.2-2.0 kbars and T= 230-350oC, under an elevated geothermal gradient of 40-45oC km-1. Polymineralic cataclastites associated with Caledonide deformation indicate that tectonism and metamorphism were in part contemporaneous.
Resumo:
Rhizocarpon geographicum (L.) DC. is one of the most widely distributed species of crustose lichens. This unusual organism comprises yellow-green ‘areolae’ that contain the algal symbiont which develop and grow on the surface of a non-lichenized, fungal ‘hypothallus’ that extends beyond the margin of the areolae to form a marginal ring. This species grows exceptionally slowly with annual radial growth rates (RGR) as low as 0.07 mm yr-1 and its considerable longevity has been exploited by geologists in the development of methods of dating the age of exposure of rock surfaces and glacial moraines (‘lichenometry’). Recent research has established some aspects of the basic biology of this important and interesting organism. This chapter describes the general structure of R. geographicum, how the areolae and hypothallus develop, why the lichen grows so slowly, the growth rate-size curve, and some aspects of the ecology of R. geographicum including whether the lichen can inhibit the growth of its neighbours by chemical means (‘allelopathy’). Finally, the importance of R. geographicum in direct and indirect lichenometry is reviewed.