8 resultados para dynamic stochastic general equilibrium models

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use two general equilibrium models to explain why changes in the external economic environment result in pro-cyclical aggregate dividend payout behavior. Both models that we consider endogenize low elasticity of investment. The first model incorporates capital adjustment costs, while the second one assumes that risk-averse managers maximize their own objective function rather than shareholder wealth. We show that, while both models generate pro-cyclical aggregate dividends, a feature consistent with the observed business-cycle pattern of payouts from well-diversified portfolios, the second model provides a more likely explanation for this effect. Our findings emphasize the importance of incorporating agency conflicts when considering the relationship between the external economic environment and the financial behavior of businesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I model the forward premium in the U.K. gilt-edged market over the period 1982–96 using a two-factor general equilibrium model of the term structure of interest rates. The model permits the decomposition of the forward premium into separate components representing interest rate expectations, the risk premia associated with each of the underlying factors, and terms capturing the direct impact of the variances of the factors on the shape of the forward curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores optimal biofuel subsidies in a general equilibrium trade model. The focus is on the production of biofuels such as corn-based ethanol, which diverts corn from use as food. In the small-country case, when the tax on crude is not available as a policy option, a second-best biofuel subsidy may or may not be positive. In the large-country case, the twin objectives of pollution reduction and terms-of-trade improvement justify a combination of crude tax and biofuel subsidy for the food exporter. Finally, we show that when both nations engage in biofuel policies, the terms-of-trade effects encourage the Nash equilibrium subsidy to be positive (negative) for the food exporting (importing) nation. © 2013 John Wiley & Sons Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This preliminary report describes work carried out as part of work package 1.2 of the MUCM research project. The report is split in two parts: the ?rst part (Sections 1 and 2) summarises the state of the art in emulation of computer models, while the second presents some initial work on the emulation of dynamic models. In the ?rst part, we describe the basics of emulation, introduce the notation and put together the key results for the emulation of models with single and multiple outputs, with or without the use of mean function. In the second part, we present preliminary results on the chaotic Lorenz 63 model. We look at emulation of a single time step, and repeated application of the emulator for sequential predic- tion. After some design considerations, the emulator is compared with the exact simulator on a number of runs to assess its performance. Several general issues related to emulating dynamic models are raised and discussed. Current work on the larger Lorenz 96 model (40 variables) is presented in the context of dimension reduction, with results to be provided in a follow-up report. The notation used in this report are summarised in appendix.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.