43 resultados para dynamic probabilistic networks

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report for the first time on the limitations in the operational power range of network traffic in the presence of heterogeneous 28-Gbaud polarization-multiplexed quadrature amplitude modulation (PM-mQAM) channels in a nine-channel dynamic optical mesh network. In particular, we demonstrate that transponders which autonomously select a modulation order and launch power to optimize their own performance will have a severe impact on copropagating network traffic. Our results also suggest that altruistic transponder operation may offer even lower penalties than fixed launch power operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning user interests from online social networks helps to better understand user behaviors and provides useful guidance to design user-centric applications. Apart from analyzing users' online content, it is also important to consider users' social connections in the social Web. Graph regularization methods have been widely used in various text mining tasks, which can leverage the graph structure information extracted from data. Previously, graph regularization methods operate under the cluster assumption that nearby nodes are more similar and nodes on the same structure (typically referred to as a cluster or a manifold) are likely to be similar. We argue that learning user interests from complex, sparse, and dynamic social networks should be based on the link structure assumption under which node similarities are evaluated based on the local link structures instead of explicit links between two nodes. We propose a regularization framework based on the relation bipartite graph, which can be constructed from any type of relations. Using Twitter as our case study, we evaluate our proposed framework from social networks built from retweet relations. Both quantitative and qualitative experiments show that our proposed method outperforms a few competitive baselines in learning user interests over a set of predefined topics. It also gives superior results compared to the baselines on retweet prediction and topical authority identification. © 2014 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing wireless systems are normally regulated by a fixed spectrum assignment strategy. This policy leads to an undesirable situation that some systems may only use the allocated spectrum to a limited extent while others have very serious spectrum insufficiency situation. Dynamic Spectrum Access (DSA) is emerging as a promising technology to address this issue such that the unused licensed spectrum can be opportunistically accessed by the unlicensed users. To enable DSA, the unlicensed user shall have the capability of detecting the unoccupied spectrum, controlling its spectrum access in an adaptive manner, and coexisting with other unlicensed users automatically. In this article, we propose a radio system Transmission Opportunity-based spectrum access control protocol with the aim to improve spectrum access fairness and ensure safe coexistence of multiple heterogeneous unlicensed radio systems. In the scheme, multiple radio systems will coexist and dynamically use available free spectrum without interfering with licensed users. Simulation is carried out to evaluate the performance of the proposed scheme with respect to spectrum utilisation, fairness and scalability. Comparing with the existed studies, our strategy is able to achieve higher scalability and controllability without degrading spectrum utilisation and fairness performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamic bandwidth reservation (DBR) scheme for hybrid IEEE 802.16 wireless networks is investigated, in which 802.16 networks serve as the backhaul for client networks, such as WiFi hotspots and cellular networks. The DBR scheme implemented in the subscription stations (SSs) (co-locating with access pointers) consists of two components: connection admission controller (CAC), and bandwidth controller (BC). The CAC processes the received connection set-up requests from the client networks connected to the SSs. The BC manages the request and release of bandwidth from the base station (BS). It dynamically changes the reserved bandwidth between a small number of values. Hysteresis is incorporated in bandwidth release to reduce bandwidth request signalling load and connection blocking probability. An analytical model is proposed to evaluate the performances of reserved bandwidth, connection blocking probability and signalling load. The impacts of hysteresis mechanism and probability of reservation request blocking are taken into account. Simulation verifies the analytical model. ©2008 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report for the first time, the impact of cross phase modulation in WDM optical transport networks employing dynamic 28 Gbaud PM-mQAM transponders (m = 4, 16, 64, 256). We demonstrate that if the order of QAM is adjusted to maximize the capacity of a given route, there may be a significant degradation in the transmission performance of existing traffic for a given dynamic network architecture. We further report that such degradations are correlated to the accumulated peak-to-average power ratio of the added traffic along a given path, and that managing this ratio through pre-distortion reduces the impact of adjusting the constellation size of neighboring channels. (C) 2011 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study heterogeneity among nodes in self-organizing smart camera networks, which use strategies based on social and economic knowledge to target communication activity efficiently. We compare homogeneous configurations, when cameras use the same strategy, with heterogeneous configurations, when cameras use different strategies. Our first contribution is to establish that static heterogeneity leads to new outcomes that are more efficient than those possible with homogeneity. Next, two forms of dynamic heterogeneity are investigated: nonadaptive mixed strategies and adaptive strategies, which learn online. Our second contribution is to show that mixed strategies offer Pareto efficiency consistently comparable with the most efficient static heterogeneous configurations. Since the particular configuration required for high Pareto efficiency in a scenario will not be known in advance, our third contribution is to show how decentralized online learning can lead to more efficient outcomes than the homogeneous case. In some cases, outcomes from online learning were more efficient than all other evaluated configuration types. Our fourth contribution is to show that online learning typically leads to outcomes more evenly spread over the objective space. Our results provide insight into the relationship between static, dynamic, and adaptive heterogeneity, suggesting that all have a key role in achieving efficient self-organization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.