3 resultados para dynamic ontologies

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontologies have become widely accepted as the main method for representing knowledge in Knowledge Management (KM) applica-tions. Given the continuous and rapid change and dynamic nature of knowledge in all fields, automated methods for construct-ing ontologies are of great importance. All ontologies or taxonomies currently in use have been hand built and require consider-able manpower to keep up to date. Taxono-mies are less logically rigorous than ontolo-gies, and in this paper we consider the re-quirements for a system which automatically constructed taxonomies. There are a number of potentially useful methods for construct-ing hierarchically organised concepts from a collection of texts and there are a number of automatic methods which permit one to as-sociate one word with another. The impor-tant issue for the successful development of this research area is to identify techniques for labelling the relation between two candi-date terms, if one exists. We consider a number of possible approaches and argue that the majority are unsuitable for our re-quirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.