2 resultados para drug derivative

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Covalent attachment of the anticancer drugs temozolomide (Temodal) and mitozolomide to triplex-forming oligonucleotides (TFOs) is a potential way of targeting these alkylating agents to specific gene sequences to maximise site-selectivity. In this work, polypyrimidine TFO conjugates of both drugs were synthesised and targeted to duplex DNA in an attempt to effect site-specific alkylation of guanine residues. Concurrently, in an attempt to enhance the triple helix stability of TFOs at neutral pH, the thermal stabilities of triplexes formed from TFOs containing isoguanine, 2-O-benzyl- and 2-O-allyl-adenine were evaluated. A novel cleavage and deprotection procedure was developed which allowed for the solid phase synthesis of the base-sensitive TFO-drug conjugates using a recently developed silyl-linked controlled pore glass (SLCPG) support. Covalent attachment of either temozolomide or mitozolomide at the 5'-end of TFO conjugates caused no destabilisation of the triplexes studied. The synthesis of a phosphoramidite derivative of mitozolomide enabled direct incorporation of this reagent into a model sequence during DNA synthesis. After cleavage and deprotection of the TFO-drug conjugate, the 5'-end mitozolomide residue was found to have decomposed presumably as a result of ring-opening of the tetrazinone ring. The base-sensitive antibacterial and antitumour agent, metronidazole, was also successfully incorporated at the 5'-end of the oligonucleotide d(T8) using conventional methods. Two C2-substituted derivatives of 2'-deoxyadenosine containing 2-O-benzyl and 2-O-allyl groups were synthesised. Hydrogenolysis of the 2-O-benzyl analogue provided a useful route, amenable to scale-up, for the synthesis of the rare nucleoside 2'-deoxyisoguanosine (isoG). Both the 2-O-allyl and 2-O-benzyl derivatives were incorporated into TFO sequences using phosphoramidite methodology. Thermal melting experiments showed that the 2-O-allyl and 2-O-benzyl groups caused marked destabilisation of the triple helices studied, in contrast to hexose-DNA duplexes, where aralkyl substituents caused significant stabilisation of duplexes. TFOs containing isoG were synthesised by Pd(O)-catalysed deallylation of 2-0-allyl adenine residues. These sequences containing isoG, in its N3- or 02-H tautomeric form, formed triple helices which were equally as stable as those containing adenine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big advances are being achieved in the design of new implantable devices with enhanced properties. For example, synthetic porous three-dimensional structures can mimic the architecture of the tissues, and serve as templates for cell seeding. In addition, polymeric nanoparticles are able to provide a programmable and sustained local delivery of different types of biomolecules. In this study novel alternative scaffolds with controlled bioactive properties and architectures are presented. Two complementary approaches are described. Firstly, scaffolds with nanogels as active controlled release devices incorporated inside the three-dimensional structure are obtained using the thermally induced phase separation (TIPS) method. Secondly, a novel coating method using the spraying technique to load these nanometric crosslinked hydrogels on the surface of two-dimensional (2D) and three-dimensional (3D) biodegradable scaffolds is described. The scanning electron microscopy (SEM) images show the distribution of the nanogels on the surface of different substrates and also inside the porous structure of poly-a-hydroxy ester derivative foams. Both of them are compared in terms of manufacturability, dispersion and other processing variables.