4 resultados para dopamine D2 receptors
em Aston University Research Archive
Resumo:
Neuronal burst firing in the subthalamic nucleus (STN) is one of the hallmarks of dopamine depletion in Parkinson's disease. Here, we have determined the postsynaptic effects of dopamine in the STN and the functional consequences of dopamine receptor modulation on burst firing in vitro. STN cells displayed regular spiking activity at a rate of 7.9 +/- 0.5 Hz. Application of dopamine (30 mu M) induced membrane depolarisations accompanied by an increase in firing rate of mean 12.0 +/- 0.6 Hz in all 69 cells. The dopamine effect was mimicked by the dopamine D1/D5 receptor agonist SKF38393 (10 mu M, 17 cells) and the dopamine D2-like receptor agonist quinpirole (10 mu M, 35 cells), partly reduced by D1/D5 antagonist SCH23390 (2 mu M, seven cells), but unaffected by the D2 antagonists sulpiride (10 mu M, seven cells) or eticlopride (10 mu M, six cells). Using voltage ramps, dopamine induced an inward current of 69 +/- 9.4 pA at a holding potential of -60 mV (n = 17). This current was accompanied by an increase in input conductance of 1.55 +/- 0.35 nS which reversed at -30.6 +/- 2.3 mV, an effect mimicked by SKF38393 (10 AM, nine cells). Similar responses were observed when measuring instantaneous current evoked by voltage steps and in the presence of the I-h blocker, ZD7288, indicating effects independent of I-h. The increase in conductance was blocked by SCH23390 (2 mu M, n = 4), mimicked by the activator of adenylyl cyclase forskolin (10 mu M, n = 7) and blocked by H-89, an inhibitor of cyclic AMP dependent protein kinase A (10 PM, n = 6). These results indicate that the dopamine depolarisation is in part mediated by D1/D5 receptor mediated activation of a cyclic-nucleotide gated (CNG) non-specific cation conductance. This conductance contributes to the membrane depolarisation that changes STN neuronal bursting to more regular activity by significantly increasing burst duration and number of spikes per burst.
Resumo:
Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.
Resumo:
The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.
Resumo:
Changes in the pattern of activity of neurones within the basal ganglia are relevant in the pathophysiology and symptoms of Parkinson’s disease. The globus pallidus (GP) – subthalamic nucleus (STN) network has been proposed to form a pacemaker driving regenerative synchronous bursting activity. In order to test whether this activity can be sustained in vitro a 20o parasagittal slice of mouse midbrain was developed which preserved functional connectivity between the STN and GP. Mouse STN and GP cells were characterised electrophysiologically by the presence or absence of a voltage sag in response to hyperpolarising current steps indicative of Ih and the presence of rebound depolarisations. The presence of evoked and spontaneous post-synaptic GABA and glutamatergic currents indicated functional connectivity between the STN and GP. In control slices, STN cells fired action potentials at a regular rate, activity which was unaffected by bath application of the GABAA receptor antagonist picrotoxin (50 μM) or the glutamate receptor antagonist CNQX (10 μM). Paired extracellular recordings of STN cells showed uncorrelated firing. Oscillatory burst activity was induced pharmacologically using the glutamate receptor agonist, NMDA (20 μM), in combination with the potassium channel blocker apamin (50 -100 nM). The burst activity was unaffected by bath application of picrotoxin or CNQX while paired STN recordings showed uncorrelated activity indicating that the activity is not produced by the neuronal network. Thus, no regenerative activity is evident in this mouse brain preparation, either in control slices or when bursting is pharmacologically induced, suggesting the requirement of other afferent inputs that are not present in the slice. Using single-unit extracellular recording, dopamine (30 μM) produced an excitation of STN cells. This excitation was independent of synaptic transmission and was mimicked by both the Dl-like receptor agonist SKF38393 (10 μM) and the D2-like receptor agonist quinpirole (10 μM). However, the excitation was partially reduced by the D1-like antagonist SCH23390 (2 μM) but not by the D2-like antagonists sulpiride (10 μM) and eticlopride (10 μM). Using whole-recordings, dopamine was shown to induce membrane depolarisation. This depolarisation was caused either by a D1-like receptor mediated increase in a conductance which reversed at -34 mV, consistent with a non-specific cation conductance, or a D2-like receptor mediated decrease in conductance which reversed around -100 mV, consistent with a potassium conductance. Bath application of dopamine altered the pattern of the burst-firing produced by NMDA an apamin towards a more regular pattern. This effect was associated with a decrease in amplitude and ll1crease in frequency of TTX-resistant plateau potentials which underlie the burst activity.