26 resultados para domain-specific visual languages
em Aston University Research Archive
Resumo:
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions.
Resumo:
To benefit from the advantages that Cloud Computing brings to the IT industry, management policies must be implemented as a part of the operation of the Cloud. Among others, for example, the specification of policies can be used for the management of energy to reduce the cost of running the IT system or also for security policies while handling privacy issues of users. As cloud platforms are large, manual enforcement of policies is not scalable. Hence, autonomic approaches for management policies have recently received a considerable attention. These approaches allow specification of rules that are executed via rule-engines. The process of rules creation starts by the interpretation of the policies drafted by high-rank managers. Then, technical IT staff translate such policies to operational activities to implement them. Such process can start from a textual declarative description and after numerous steps terminates in a set of rules to be executed on a rule engine. To simplify the steps and to bridge the considerable gap between the declarative policies and executable rules, we propose a domain-specific language called CloudMPL. We also design a method of automated transformation of the rules captured in CloudMPL to the popular rule-engine Drools. As the policies are changed over time, code generation will reduce the time required for the implementation of the policies. In addition, using a declarative language for writing the specifications is expected to make the authoring of rules easier. We demonstrate the use of the CloudMPL language into a running example extracted from a management energy consumption case study.
Resumo:
A new principled domain independent watermarking framework is presented. The new approach is based on embedding the message in statistically independent sources of the covertext to mimimise covertext distortion, maximise the information embedding rate and improve the method's robustness against various attacks. Experiments comparing the performance of the new approach, on several standard attacks show the current proposed approach to be competitive with other state of the art domain-specific methods.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
Progressive supranuclear palsy (PSP) is a rare, degenerative disorder of the brain believed to affect between 1.39 and 6.6 individuals per 100,000 of the population. The disorder is likely to be more common than suggested by these data due to difficulties in diagnosis and especially in distinguishing PSP from other conditions with similar symptoms such as multiple system atrophy (MSA), corticobasal degeneration (CBD), and Parkinson’s disease (PD). PSP was first described in 1964 by Steele, Richardson and Olszewski and originally called Steele-Richardson-Olszewski syndrome. The disorder is the second commonest syndrome in which the patient exhibits ‘parkinsonism’, viz., a range of problems involving movement most typically manifest in PD itself but also seen in PSP, MSA and CBD. Although primarily a brain disorder, patients with PSP exhibit a range of visual clinical signs and symptoms that may be useful in differential diagnosis. Hence, the present article describes the general clinical and pathological features of PSP, its specific visual signs and symptoms, discusses the usefulness of these signs in differential diagnosis, and considers the various treatment options.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
The Teallach project has adapted model-based user-interface development techniques to the systematic creation of user-interfaces for object-oriented database applications. Model-based approaches aim to provide designers with a more principled approach to user-interface development using a variety of underlying models, and tools which manipulate these models. Here we present the results of the Teallach project, describing the tools developed and the flexible design method supported. Distinctive features of the Teallach system include provision of database-specific constructs, comprehensive facilities for relating the different models, and support for a flexible design method in which models can be constructed and related by designers in different orders and in different ways, to suit their particular design rationales. The system then creates the desired user-interface as an independent, fully functional Java application, with automatically generated help facilities.
Resumo:
Translators wishing to work on translating specialised texts are traditionally recommended to spend much time and effort acquiring specialist knowledge of the domain involved, and for some areas of specialised activity, this is clearly essential. For other types of translation-based, domain-specific of communication, however, it is possible to develop a systematic approach to the task which will allow for the production of target texts which are adequate for purpose, in a range of specialised domains, without necessarily having formal qualifications in those areas. For Esselink (2000) translation agencies, and individual clients, would tend to prefer a subject expert who also happens to have competence in one or more languages over a trained translator with a high degree of translation competence, including the ability to deal with specialised translation tasks. The problem, for the would-be translator, is persuading prospective clients that he or she is capable of this. This paper will offer an overview of the principles used to design training intended to teach trainee translators how to use a systematic approach to specialised translation, in order to extend the range of areas in which they can tackle translation, without compromising quality or reliability. This approach will be described within the context of the functionalist approach developed in particular by Reiss and Vermeer (1984), Nord (1991, 1997) inter alia.
Resumo:
Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.
Resumo:
The use of ontologies as representations of knowledge is widespread but their construction, until recently, has been entirely manual. We argue in this paper for the use of text corpora and automated natural language processing methods for the construction of ontologies. We delineate the challenges and present criteria for the selection of appropriate methods. We distinguish three ma jor steps in ontology building: associating terms, constructing hierarchies and labelling relations. A number of methods are presented for these purposes but we conclude that the issue of data-sparsity still is a ma jor challenge. We argue for the use of resources external tot he domain specific corpus.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
This article describes the general symptoms, diagnosis and changes in the nervous system in multiple sclerosis. A second article will describe the specific visual symptoms which are believed to be characteristic of the disease.
Resumo:
This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.