11 resultados para divalent cations

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of styrene maleic acid (SMA) co-polymers to extract and purify transmembrane proteins, whilst retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene to maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA) which vary in size and shape were used. Our results show that several polymers can be used to extract membrane proteins comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular weight (7.5-10 kDa) is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification SMA 2000 was found to be the best choice for yield, purity and function. However the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Heterocyclic cations are incorporated into proteins using 5-(2-bromoethyl)phenanthridinium bromide, which selectively reacts with either cysteine or lysine residues, resulting in ethylphenanthridinium (Phen) or highly stable cyclised dihydro-imidazo-phenanthridinium (DIP) adducts respectively; these modifications have been found to manipulate the observed structure of lysozyme and bovine serum albumin by AFM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances of cation homeostasis, particularly hypomagnesaemia, are a frequent consequence of treatment with aminoglycoside antibiotics. These disturbances are thought to result from renal wasting of cations and administration of gentamicin to rats has been shown to produce hypercalciuria and hypermagnesiuria. The aims of this study were to attempt to elucidate these responses in anaesthetised rats infused with gentamicin and to use this model to investigate the mechanisms of these effects. Fischer 344 rats were anaesthetised and surgically prepared for clearance experiments. Infusion of gentamicin in isotonic saline increased urinary output of calcium and magnesium while sodium and potassium output were unaffected. These elevations in calcium and magnesium excretion were explained by reduced tubular reabsorption of these cations. Both the hypercalciuric and hypermagnesiuric responses to gentamicin were extremely rapid and were sustained during drug infusion; when gentamicin infusion ceased both responses were rapidly reversible. Infusion of another aminoglycoside, tobramycin, produced very similar effects to gentamicin. The hypercalciuria and hypermagnesiuria caused by gentimicin infusion were unaffected by parathyroidectomy. The peak increases in calcium and magnesium output brought about by infusion of gentamicin with frusemide were not significantly different to the increases produced by frusemide alone. The site at which gentamicin interferes with calcium and magnesium reabsorption cannot be firmly deduced from these results. However, the known close association between calcium and sodium reabsorption in the proximal tubule implies that gentamicin is unlikely to change proximal calcium reabsorption without a similar change in proximal sodium reabsorption. The similarity between the hypercalciuric and hypermagnesiuric effects of frusemide alone and the effects of frusemide infused simultaneously with gentamicin suggests that gentamicin may act at the same site as the diuretic, the thick ascending limb of the loop of Henle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of ionic strength and of the chemical nature of cations on the protein-protein interactions in ovalbumin solution was studied using small-angle X-ray and neutron scattering (SAXS/SANS). The globular protein ovalbumin is found in dimeric form in solutions as suggested by SANS/SAXS experiments. Due to the negative charge of the proteins at neutral pH, the protein-protein interactions without any salt addition are dominated by electrostatic repulsion. A structure factor related to screened Coulombic interactions together with an ellipsoid form factor was used to fit the scattering intensity. A monovalent salt (NaCl) and a trivalent salt (YCl3) were used to study the effect of the chemical nature of cations on the interaction in protein solutions. Upon addition of NaCl, with ionic strength below that of physiological conditions (150 mM), the effective interactions are still dominated by the surface charge of the proteins and the scattering data can be understood using the same model. When yttrium chloride was used, a reentrant condensation behavior, i.e., aggregation and subsequent redissolution of proteins with increasing salt concentration, was observed. SAXS measurements reveal a transition from effective repulsion to attraction with increasing salt concentration. The solutions in the reentrant regime become unstable after long times (several days). The results are discussed and compared with those from bovine serum albumin (BSA) in solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and crystal structure determination (at 293 K) of the title complex, Cs[Fe(C8H6BrN3OS)2], are reported. The compound is composed of two dianionic O,N,S-tridentate 5-bromo­salicyl­aldehyde thio­semicarbazonate(2-) ligands coord­inated to an FeIII cation, displaying a distorted octa­hedral geometry. The ligands are orientated in two perpendicular planes, with the O- and S-donor atoms in cis positions and the N-donor atoms in trans positions. The complex displays inter­molecular N-H...O and N-H...Br hydrogen bonds, creating R44(18) rings, which link the FeIII units in the a and b directions. The FeIII cation is in the low-spin state at 293 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.