5 resultados para dissolution mechanisms
em Aston University Research Archive
Resumo:
In vitro studies of drug absorption processes are undertaken to assess drug candidate or formulation suitability, mechanism investigation, and ultimately for the development of predictive models. This study included each of these approaches, with the aim of developing novel in vitro methods for inclusion in a drug absorption model. Two model analgesic drugs, ibuprofen and paracetamol, were selected. The study focused on three main areas, the interaction of the model drugs with co-administered antacids, the elucidation of the mechanisms responsible for the increased absorption rate observed in a novel paracetamol formulation and the development of novel ibuprofen tablet formulations containing alkalising excipients as dissolution promoters.Several novel dissolution methods were developed. A method to study the interaction of drug/excipient mixtures in the powder form was successfully used to select suitable dissolution enhancing exicipents. A method to study intrinsic dissolution rate using paddle apparatus was developed and used to study dissolution mechanisms. Methods to simulate stomach and intestine environments in terms of media composition and volume and drug/antacid doses were developed. Antacid addition greatly increased the dissolution of ibuprofen in the stomach model.Novel methods to measure drug permeability through rat stomach and intestine were developed, using sac methodology. The methods allowed direct comparison of the apparent permeability values obtained. Tissue stability, reproducibility and integrity was observed, with selectivity between paracellular and transcellular markers and hydrophilic and lipophilic compounds within an homologous series of beta-blockers.
Resumo:
Current analytical assay methods for ampicillin sodium and cloxacillin sodium are discussed and compared, High Performance Liquid Chromatography (H.P.L.C.) being chosen as the most accurate, specific and precise. New H.P.L.C. methods for the analysis of benzathine cloxacillin; benzathine penicillin V; procaine penicillin injection B.P.; benethamine penicillin injection; fortified B.P.C.; benzathine penicillin injection; benzathine penicillin injection, fortified B.P.C.; benzathine penicillin suspnsion; ampicillin syrups and penicillin syrups are described. Mechanical or chemical damage to column packings is often associated with H.P.L.C. analysis. One type, that of channel formation, is investigated. The high linear velocity of solvent and solvent pulsing during the pumping cycle were found to be the cause of this damage. The applicability of nonisotherrnal kinetic experiments to penicillin V preparations, including formulated paediatric syrups, is evaluated. A new type of nonisotherrnal analysis, based on slope estimation and using a 64K Random Access Memory (R.A.M.) microcomputer is described. The name of the program written for this analysis is NONISO. The distribution of active penicillin in granules for reconstitution into ampicillin and penicillin V syrups, and its effect on the stability of the reconstituted products, are investigated. Changing the diluent used to reconstitue the syrups was found to affect the stability of the product. Dissolution and stability of benzathine cloxacillin at pH2, pH6 and pH9 is described, with proposed dissolution mechanisms and kinetic analysis to support these mechanisms. Benzathine and cloxacillin were found to react in solution at pH9, producing an insoluble amide.
Resumo:
Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.
Resumo:
Solid dispersions can be used to improve dissolution of poorly soluble drugs and PVP is a common polymeric carrier in such systems. The mechanisms controlling release of drug from solid dispersions are not fully understood and proposed theories are dependent on an understanding of the dissolution behaviour of both components of the dispersion. This study uses microviscometry to measure small changes in the viscosity of the dissolution medium as the polymer dissolves from ibuprofen-PVP solid dispersions. The microviscometer determines the dynamic and kinematic viscosity of liquids based on the rolling/falling ball principle. Using a standard USP dissolution apparatus, the dissolution of the polymer from the solid dispersion was easily measured alongside drug release. Drug release was found to closely follow polymer dissolution at the molecular weights and ratios used. The combination of sensitivity and ease of use make microviscometry a valuable technique for the elucidation of mechanisms governing drug release from polymeric delivery systems. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions. © 2013 Informa Healthcare USA, Inc.