43 resultados para discrete wavelet transforms

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural network learning rules can be viewed as statistical estimators. They should be studied in Bayesian framework even if they are not Bayesian estimators. Generalisation should be measured by the divergence between the true distribution and the estimated distribution. Information divergences are invariant measurements of the divergence between two distributions. The posterior average information divergence is used to measure the generalisation ability of a network. The optimal estimators for multinomial distributions with Dirichlet priors are studied in detail. This confirms that the definition is compatible with intuition. The results also show that many commonly used methods can be put under this unified framework, by assume special priors and special divergences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - To provide an example of the use of system dynamics within the context of a discrete-event simulation study. Design/methodology/approach - A discrete-event simulation study of a production-planning facility in a gas cylinder-manufacturing plant is presented. The case study evidence incorporates questionnaire responses from sales managers involved in the order-scheduling process. Findings - As the project progressed it became clear that, although the discrete-event simulation would meet the objectives of the study in a technical sense, the organizational problem of "delivery performance" would not be solved by the discrete-event simulation study alone. The case shows how the qualitative outcomes of the discrete-event simulation study led to an analysis using the system dynamics technique. The system dynamics technique was able to model the decision-makers in the sales and production process and provide a deeper understanding of the performance of the system. Research limitations/implications - The case study describes a traditional discrete-event simulation study which incorporated an unplanned investigation using system dynamics. Further, case studies using a planned approach to showing consideration of organizational issues in discrete-event simulation studies are required. Then the role of both qualitative data in a discrete-event simulation study and the use of supplementary tools which incorporate organizational aspects may help generate a methodology for discrete-event simulation that incorporates human aspects and so improve its relevance for decision making. Practical implications - It is argued that system dynamics can provide a useful addition to the toolkit of the discrete-event simulation practitioner in helping them incorporate a human aspect in their analysis. Originality/value - Helps decision makers gain a broader perspective on the tools available to them by showing the use of system dynamics to supplement the use of discrete-event simulation. © Emerald Group Publishing Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed transport studies in plasmas require the solution of the time evolution of many different initial positions of test particles in the phase space of the systems to be investigated. To reduce this amount of numerical work, one would like to replace the integration of the time-continues system with a mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When making predictions with complex simulators it can be important to quantify the various sources of uncertainty. Errors in the structural specification of the simulator, for example due to missing processes or incorrect mathematical specification, can be a major source of uncertainty, but are often ignored. We introduce a methodology for inferring the discrepancy between the simulator and the system in discrete-time dynamical simulators. We assume a structural form for the discrepancy function, and show how to infer the maximum-likelihood parameter estimates using a particle filter embedded within a Monte Carlo expectation maximization (MCEM) algorithm. We illustrate the method on a conceptual rainfall-runoff simulator (logSPM) used to model the Abercrombie catchment in Australia. We assess the simulator and discrepancy model on the basis of their predictive performance using proper scoring rules. This article has supplementary material online. © 2011 International Biometric Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of discrete beta-amyloid (A beta) deposits was studied in the superficial laminae of cortical fields of different types and in the hippocampus in 6 cases of Alzheimer's disease (AD). In 41/42 tissues examined, discrete A beta deposits were aggregated into clusters and in 34/41 tissues (25/34 of the cortical tissues), there was evidence for a regular periodicity of the A beta deposit clusters parallel to the tissue boundary. The dimensions of the clusters varied from 400 to > 12,800 microns in different tissues. Although the A beta deposit clusters were larger than predicted, the regular periodicity suggests that they develop in relation to groups of cells associated with specific projections. This would be consistent with the hypothesis that the distribution of discrete A beta deposits in AD could reflect progressive synaptic disconnection along interconnected neuronal pathways. This implies that amyloid deposition could be a response to, rather than a cause of, synaptic disconnection in AD.