61 resultados para discrete event systems
em Aston University Research Archive
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
Manufacturing planning and control systems are fundamental to the successful operations of a manufacturing organisation. 10 order to improve their business performance, significant investment is made by companies into planning and control systems; however, not all companies realise the benefits sought Many companies continue to suffer from high levels of inventory, shortages, obsolete parts, poor resource utilisation and poor delivery performance. This thesis argues that the fit between the planning and control system and the manufacturing organisation is a crucial element of success. The design of appropriate control systems is, therefore, important. The different approaches to the design of manufacturing planning and control systems are investigated. It is concluded that there is no provision within these design methodologies to properly assess the impact of a proposed design on the manufacturing facility. Consequently, an understanding of how a new (or modified) planning and control system will perform in the context of the complete manufacturing system is unlikely to be gained until after the system has been implemented and is running. There are many modelling techniques available, however discrete-event simulation is unique in its ability to model the complex dynamics inherent in manufacturing systems, of which the planning and control system is an integral component. The existing application of simulation to manufacturing control system issues is limited: although operational issues are addressed, application to the more fundamental design of control systems is rarely, if at all, considered. The lack of a suitable simulation-based modelling tool does not help matters. The requirements of a simulation tool capable of modelling a host of different planning and control systems is presented. It is argued that only through the application of object-oriented principles can these extensive requirements be achieved. This thesis reports on the development of an extensible class library called WBS/Control, which is based on object-oriented principles and discrete-event simulation. The functionality, both current and future, offered by WBS/Control means that different planning and control systems can be modelled: not only the more standard implementations but also hybrid systems and new designs. The flexibility implicit in the development of WBS/Control supports its application to design and operational issues. WBS/Control wholly integrates with an existing manufacturing simulator to provide a more complete modelling environment.
Resumo:
Discrete event simulation of manufacturing systems has become widely accepted as an important tool to aid the design of such systems. Often, however, it is applied by practitioners in a manner which largely ignores an important element of industry; namely, the workforce. Workers are usually represented as simple resources, often with deterministic performance values. This approach ignores the potentially large effect that human performance variation can have on a system. A long-term data collection exercise is described with the aim of quantifying the performance variation of workers in a typical automotive assembly plant. The data are presented in a histogram form which is immediately usable in simulations to improve the accuracy of design assessment. The results show levels of skewness and range which are far larger than anticipated by current researchers and practitioners in the field.
Resumo:
Retail customers provide a number of significant challenges to the efficiency and effectiveness of distribution systems. These challengers include shorter delivery windows, fluctuating volumes and a wider product mix. This paper demonstrates the use of discrete-event simulation to investigate policy issues regarding the incorporation of retail customers in a road delivery network from the spoke terminal of a hub and spoke distribution system. In particular a comparison of a mixed (retail and non-retail) delivery policy with a dedicated retail delivery run is made.
Resumo:
Discrete-event simulation (DES) is a developed technology used to model manufacturing and service systems. However, although the importance of modelling people in a DES has been recognised, there is little guidance on how this can be achieved in practice. The results from a literature review were used in order to identify examples of the use of DES to model people. Each article was examined in order to determine the method used to model people within the simulation study. It was found that there are no common methods but a diverse range of approaches used to model human behaviour in DES. This paper provides an outline of the approaches used to model people in terms of their decision making, availability for work, task performance and arrival rate. The outcome brings together the current knowledge in this area and will be of interest to researchers considering developing a methodology for modelling people in DES and to practitioners engaged with a simulation project involving the model ling of people’s behaviour.
Resumo:
Purpose - To provide an example of the use of system dynamics within the context of a discrete-event simulation study. Design/methodology/approach - A discrete-event simulation study of a production-planning facility in a gas cylinder-manufacturing plant is presented. The case study evidence incorporates questionnaire responses from sales managers involved in the order-scheduling process. Findings - As the project progressed it became clear that, although the discrete-event simulation would meet the objectives of the study in a technical sense, the organizational problem of "delivery performance" would not be solved by the discrete-event simulation study alone. The case shows how the qualitative outcomes of the discrete-event simulation study led to an analysis using the system dynamics technique. The system dynamics technique was able to model the decision-makers in the sales and production process and provide a deeper understanding of the performance of the system. Research limitations/implications - The case study describes a traditional discrete-event simulation study which incorporated an unplanned investigation using system dynamics. Further, case studies using a planned approach to showing consideration of organizational issues in discrete-event simulation studies are required. Then the role of both qualitative data in a discrete-event simulation study and the use of supplementary tools which incorporate organizational aspects may help generate a methodology for discrete-event simulation that incorporates human aspects and so improve its relevance for decision making. Practical implications - It is argued that system dynamics can provide a useful addition to the toolkit of the discrete-event simulation practitioner in helping them incorporate a human aspect in their analysis. Originality/value - Helps decision makers gain a broader perspective on the tools available to them by showing the use of system dynamics to supplement the use of discrete-event simulation. © Emerald Group Publishing Limited.
Resumo:
There has been an increasing interest in the use of agent-based simulation and some discussion of the relative merits of this approach as compared to discrete-event simulation. There are differing views on whether an agent-based simulation offers capabilities that discrete-event cannot provide or whether all agent-based applications can at least in theory be undertaken using a discrete-event approach. This paper presents a simple agent-based NetLogo model and corresponding discrete-event versions implemented in the widely used ARENA software. The two versions of the discrete-event model presented use a traditional process flow approach normally adopted in discrete-event simulation software and also an agent-based approach to the model build. In addition a real-time spatial visual display facility is provided using a spreadsheet platform controlled by VBA code embedded within the ARENA model. Initial findings from this investigation are that discrete-event simulation can indeed be used to implement agent-based models and with suitable integration elements such as VBA provide the spatial displays associated with agent-based software.
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
There is an increasing emphasis on the use of software to control safety critical plants for a wide area of applications. The importance of ensuring the correct operation of such potentially hazardous systems points to an emphasis on the verification of the system relative to a suitably secure specification. However, the process of verification is often made more complex by the concurrency and real-time considerations which are inherent in many applications. A response to this is the use of formal methods for the specification and verification of safety critical control systems. These provide a mathematical representation of a system which permits reasoning about its properties. This thesis investigates the use of the formal method Communicating Sequential Processes (CSP) for the verification of a safety critical control application. CSP is a discrete event based process algebra which has a compositional axiomatic semantics that supports verification by formal proof. The application is an industrial case study which concerns the concurrent control of a real-time high speed mechanism. It is seen from the case study that the axiomatic verification method employed is complex. It requires the user to have a relatively comprehensive understanding of the nature of the proof system and the application. By making a series of observations the thesis notes that CSP possesses the scope to support a more procedural approach to verification in the form of testing. This thesis investigates the technique of testing and proposes the method of Ideal Test Sets. By exploiting the underlying structure of the CSP semantic model it is shown that for certain processes and specifications the obligation of verification can be reduced to that of testing the specification over a finite subset of the behaviours of the process.
Resumo:
Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0219686703000228
A simulation analysis of spoke-terminals operating in LTL Hub-and-Spoke freight distribution systems
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT The research presented in this thesis is concerned with Discrete-Event Simulation (DES) modelling as a method to facilitate logistical policy development within the UK Less-than-Truckload (LTL) freight distribution sector which has been typified by “Pallet Networks” operating on a hub-and-spoke philosophy. Current literature relating to LTL hub-and-spoke and cross-dock freight distribution systems traditionally examines a variety of network and hub design configurations. Each is consistent with classical notions of creating process efficiency, improving productivity, reducing costs and generally creating economies of scale through notions of bulk optimisation. Whilst there is a growing abundance of papers discussing both the network design and hub operational components mentioned above, there is a shortcoming in the overall analysis when it comes to discussing the “spoke-terminal” of hub-and-spoke freight distribution systems and their capabilities for handling the diverse and discrete customer profiles of freight that multi-user LTL hub-and-spoke networks typically handle over the “last-mile” of the delivery, in particular, a mix of retail and non-retail customers. A simulation study is undertaken to investigate the impact on operational performance when the current combined spoke-terminal delivery tours are separated by ‘profile-type’ (i.e. retail or nonretail). The results indicate that a potential improvement in delivery performance can be made by separating retail and non-retail delivery runs at the spoke-terminal and that dedicated retail and non-retail delivery tours could be adopted in order to improve customer delivery requirements and adapt hub-deployed policies. The study also leverages key operator experiences to highlight the main practical implementation challenges when integrating the observed simulation results into the real-world. The study concludes that DES be harnessed as an enabling device to develop a ‘guide policy’. This policy needs to be flexible and should be applied in stages, taking into account the growing retail-exposure.
Resumo:
The nature of Discrete-Event Simulation (DES) and the use of DES in organisations is changing. Two important developments are the use of Visual Interactive Modelling systems and the use of DES in Business Process Management (BPM) projects. Survey research is presented that shows that despite these developments usage of DES remains relatively low due to a lack of knowledge of the benefits of the technique. This paper considers two factors that could lead to a greater achievement and appreciation of the full benefit of DES and thus lead to greater usage. Firstly in relation to using DES to investigate social systems, both in the process of undertaking a simulation project and in the interpretation of the findings a 'soft' approach may generate more knowledge from the DES intervention and thus increase its benefit to businesses. Secondly in order to assess the full range of outcomes of DES the technique could be considered from the perspective of an information processing tool within the organisation. This will allow outcomes to be considered under the three modes of organisational information use of sense making, knowledge creating and decision making which relate to the theoretical areas of knowledge management, organisational learning and decision making respectively. The association of DES with these popular techniques could further increase its usage in business.