11 resultados para disability-related pain
em Aston University Research Archive
Resumo:
Cortical pain processing is associated with large-scale changes in neuronal connectivity, resulting from neural plasticity phenomena of which brain-derived neurotrophic factor (BDNF) is a central driver. The common single nucleotide polymorphism Val66Met is associated with reduced BDNF activity. Using the trigeminal pain-related evoked potential (tPREP) to repeated electrical painful stimuli, we investigated whether the methionine substitution at codon 66 of the BDNF gene was associated with changes in cortical processing of noxious stimuli. Fifty healthy volunteers were genotyped: 30 were Val/Val and 20 were Met-carriers. tPREPs to 30 stimuli of the right supraorbital nerve using a concentric electrode were recorded. The N2 and P2 component latencies and the N2-P2 amplitude were measured over the 30 stimuli and separately, by dividing the measurements in 3 consecutive blocks of 10 stimuli. The average response to the 30 stimuli did not differ in latency or amplitude between the 2 genotypes. There was a decrease in the N2-P2 amplitude between first and third block in the Val/Val group but not in Met-carriers. BDNF Val66Met is associated with reduced decremental response to repeated electrical stimuli, possibly as a result of ineffective mechanisms of synaptic memory and brain plasticity associated with the polymorphism. PERSPECTIVE: BDNF Val66Met polymorphism affects the tPREP N2-P2 amplitude decrement and influences cortical pain processing through neurotrophin-induced neural plasticity, or through a direct BDNF neurotransmitter-like effect. Our findings suggest that upcoming BDNF central agonists might in the future play a role in pain management.
Resumo:
Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Background The somatosensory cortex has been inconsistently activated in pain studies and the functional properties of subregions within this cortical area are poorly understood. To address this we used magnetoencephalography (MEG), a brain imaging technique capable of recording changes in cortical neural activity in real-time, to investigate the functional properties of the somatosensory cortex during different phases of the visceral pain experience. Methods In eight participants (4 male), 151-channel whole cortex MEG was used to detect cortical neural activity during 25 trials lasting 20 seconds each. Each trial comprised four separate periods of 5 seconds in duration. During each of the periods, different visual cues were presented, indicating that period 1=rest, period 2=anticipation, period 3=pain and period 4=post pain. During period 3, participants received painful oesophageal balloon distensions (four at 1 Hz). Regions of cortical activity were identified using Synthetic Aperture Magnetometry (SAM) and by the placement of virtual electrodes in regions of interest within the somatosensory cortex, time-frequency wavelet plots were generated. Results SAM analysis revealed significant activation with the primary (S1) and secondary (S2) somatosensory cortices. The time-frequency wavelet spectrograms showed that activation in S1 increased during the anticipation phase and continued during the presentation of the stimulus. In S2, activation was tightly time and phase-locked to the stimulus within the pain period. Activations in both regions predominantly occurred within the 10–15 Hz and 20–30 Hz frequency bandwidths. Discussion These data are consistent with the role of S1 and S2 in the sensory discriminatory aspects of pain processing. Activation of S1 during anticipation and then pain may be linked to its proposed role in attentional as well as sensory processing. The stimulus-related phasic activity seen in S2 demonstrates that this region predominantly encodes information pertaining to the nature and intensity of the stimulus.
Resumo:
Chronic pelvic pain (CPP), a common cause of disability in women, is a condition best viewed in the biopsychosocial framework. Psychological interventions are frequently considered alongside medical and surgical treatments. Our objective was to evaluate the effectiveness of psychological therapies for the treatment of CPP. Electronic literature searches were conducted in Medline, Embase, PsycInfo and DARE databases from database inception to April 2010. Reference lists of selected articles were searched for further articles. The studies selected were randomized controlled trials of psychological therapies in patients with CPP compared with no treatment, standard gynecological treatment or another form of psychological therapy. Two reviewers independently selected articles without language restrictions and extracted data covering study characteristics, study quality and results. Reduction in pain, measured using visual analog scales or other measurements, was the main outcome measure. Of the 107 citations identified, four studies satisfied the inclusion criteria. Compared with no psychological intervention, therapy produced a standardized mean pain score of -3.27 [95% confidence interval (CI) -4.52 to -2.02] and 1.11 (95% CI -0.05 to 2.27) at 3 months and -3.95 (95% CI -5.35 to -2.55) and 0.54 (95% CI -0.78 to 1.86) at 6 months and greater, based on a visual analog scale score of 0-10. The current evidence does not allow us to conclude whether psychological interventions have an effect on self-reported pain scores in women with CPP.
Resumo:
Several brain regions, including the primary and secondary somatosensory cortices (SI and SII, respectively), are functionally active during the pain experience. Both of these regions are thought to be involved in the sensory-discriminative processing of pain and recent evidence suggests that SI in particular may also be involved in more affective processing. In this study we used MEG to investigate the hypothesis that frequency-specific oscillatory activity may be differentially associated with the sensory and affective components of pain. In eight healthy participants (four male), MEG was recorded during a visceral pain experiment comprising baseline, anticipation, pain and post-pain phases. Pain was delivered via intraluminal oesophageal balloon distension (four stimuli at 1 Hz). Significant bilateral but asymmetrical changes in neural activity occurred in the beta-band within SI and SII. In SI, a continuous increase in neural activity occurred during the anticipation phase (20-30 Hz), which continued during the pain phase but at a lower frequency (10-15 Hz). In SII, oscillatory changes only occurred during the pain phase, predominantly in the 20-30 Hz beta band, and were coincident with the stimulus. These data provide novel evidence of functional diversity within SI, indicating a role in attentional and sensory aspects of pain processing. In SII, oscillatory changes were predominantly stimulus-related, indicating a role in encoding the characteristics of the stimulus. We therefore provide objective evidence of functional heterogeneity within SI and functional segregation between SI and SII, and suggest that the temporal and frequency dynamics within cortical regions may offer valuable insights into pain processing.
Studies on the luminance-related characteristics of the transient pattern reversal electroretinogram
Resumo:
The electroretinogram evoked by reversal pattern stimulation (rPERG) is known to contain both pattern contrast and luminance related components. The retinal mechanisms of the transient rPERGs subserving these functional characteristics are the main concern in the present studies. Considerable attention has been paid to the luminance-related characteristics of the response. The transient PERGs were found to consist of two subsequent processes using low frequency attenuation analysis. The processes overlapped and the individual difference in each process timings formed the major cause for the variations of the negative potential waveform of the transient rPERGs. Attention has been paid to those having ‘notch’ type of variation. Under different contrast levels, the amplitudes of the positive and negative potentials were linearly increased with higher contrast level and the negative potential showed a higher sensitivity to contrast changes and higher contrast gain. Under lower contrast levels, the decreased amplitudes made the difference in the timing course of the positive and negative processes evident, interpreting the appearance of the notch in some cases. Visual adaptation conditions for recording the transient rPERG were discussed. Another effort was to study the large variation of the transient rPERGs (especially the positive potential, P50) in the elderly who’s distant and near visual acuity were normal. It was found that reduction of retinal illumination contributed mostly to the P50 amplitude loss and contrast loss mostly to the negative potential (N95) amplitude loss. Senile miosis was thought to have little effect on the reduction of the retinal illumination, while the changes in the optics of the eye was probably the major cause for it, which interpreted the larger individual variation of the P50 amplitude of the elderly PERGs. Convex defocus affected the transient rPERGs more effectively than concave lenses, especially the N95 amplitude in the elderly. The disability of accommodation and the type and the degree of subjects’ ametropia should be taken into consideration when the elderly rPERGs were analysed.
Resumo:
Background - Few epidemiological studies have prospectively investigated preoperative and surgical risk factors for acute postoperative pain after surgery for breast cancer. We investigated demographic, psychological, pain-related and surgical risk factors in women undergoing resectional surgery for breast cancer. Methods - Primary outcomes were pain severity, at rest (PAR) and movement-evoked pain (MEP), in the first postoperative week. Results - In 338 women undergoing surgery, those with chronic preoperative pain were three times more likely to report moderate to severe MEP after breast cancer surgery (OR 3.18, 95% CI 1.45–6.99). Increased psychological ‘robustness’, a composite variable representing positive affect and dispositional optimism, was associated with lower intensity acute postoperative PAR (OR 0.63, 95% CI 0.48–0.82) and MEP (OR 0.71, 95% CI 0.54–0.93). Sentinel lymph node biopsy (SLNB) and intraoperative nerve division were associated with reduced postoperative pain. No relationship was found between preoperative neuropathic pain and acute pain outcomes; altered sensations and numbness postoperatively were more common after axillary sample or clearance compared with SLNB. Conclusion - Chronic preoperative pain, axillary surgery and psychological robustness significantly predicted acute pain outcomes after surgery for breast cancer. Preoperative identification and targeted intervention of subgroups at risk could enhance the recovery trajectory in cancer survivors.
Resumo:
There is interest in the use of nutritional supplementation as a prevention and treatment strategy for age-related macular disease as later stages of the condition are the leading cause of visual disability in the developed World .
Resumo:
Background: Sickle cell disease impacts the physical, emotional and psychological aspects of life of the affected persons, often times exposing them to disease associated stigma from the society and alters the health related quality of life (HRQoL). This study compared the HRQoL of adolescents with sickle cell disease with their healthy peers, identified socio-demographic and clinical factors impacting HRQoL, and determined the extent and effects of SCD related stigma on quality of life. Procedure: We conducted a cross-sectional survey among 160 adolescents, 80 with SCD and 80 adolescents without SCD. Socio-demographic and clinical data were collected using a pre-tested questionnaire. HRQoL was investigated using the Short Form (SF-36v2) Health Survey. SCD perceived stigma was measured using an adaptation of a perceived stigma questionnaire. Results: Adolescents with SCD have significantly worse HRQoL than their peers in all of the most important dimensions of HRQoL (physical functioning, physical roles limitation, emotional roles limitation, social functioning, bodily pain, vitality and general health perception) except mental health. Recent hospital admission and SCD related complication further lowered HRQoL scores. Over seventy percent of adolescents with SCD have moderate to high level of perception of stigmatisation. Hospitalisation, SCD complication, SCD stigma were inversely, and significantly associated with HRQoL. Conclusions: Adolescents living with SCD in Nigeria have lower health related quality of life compared to their healthy peers. They also experience stigma that impacts their HRQoL. Complications of SCD and hospital admissions contribute significantly to this impairment. Pediatr Blood Cancer 2015;62:1245-1251.
Resumo:
Background and objective: Spinal cord stimulation (SCS) is believed to exert supraspinal effects; however, these mechanisms are still far from fully elucidated. This systematic review aims to assess existing neurophysiological and functional neuroimaging literature to reveal current knowledge regarding the effects of SCS for chronic neuropathic pain on brain activity, to identify gaps in knowledge, and to suggest directions for future research. Databases and data treatment: Electronic databases and hand-search of reference lists were employed to identify publications investigating brain activity associated with SCS in patients with chronic neuropathic pain, using neurophysiological and functional neuroimaging techniques (fMRI, PET, MEG, EEG). Studies investigating patients with SCS for chronic neuropathic pain and studying brain activity related to SCS were included. Demographic data (age, gender), study factors (imaging modality, patient diagnoses, pain area, duration of SCS at recording, stimulus used) and brain areas activated were extracted from the included studies. Results: Twenty-four studies were included. Thirteen studies used neuroelectrical imaging techniques, eight studies used haemodynamic imaging techniques, two studies employed both neuroelectrical and haemodynamic techniques separately, and one study investigated cerebral neurobiology. Conclusions: The limited available evidence regarding supraspinal mechanisms of SCS does not allow us to develop any conclusive theories. However, the studies included appear to show an inhibitory effect of SCS on somatosensory evoked potentials, as well as identifying the thalamus and anterior cingulate cortex as potential mediators of the pain experience. The lack of substantial evidence in this area highlights the need for large-scale controlled studies of this kind.