19 resultados para direct search optimization algorithm
em Aston University Research Archive
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.
Resumo:
This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
Measurement and variation control of geometrical Key Characteristics (KCs), such as flatness and gap of joint faces, coaxiality of cabin sections, is the crucial issue in large components assembly from the aerospace industry. Aiming to control geometrical KCs and to attain the best fit of posture, an optimization algorithm based on KCs for large components assembly is proposed. This approach regards the posture best fit, which is a key activity in Measurement Aided Assembly (MAA), as a two-phase optimal problem. In the first phase, the global measurement coordinate system of digital model and shop floor is unified with minimum error based on singular value decomposition, and the current posture of components being assembly is optimally solved in terms of minimum variation of all reference points. In the second phase, the best posture of the movable component is optimally determined by minimizing multiple KCs' variation with the constraints that every KC respectively conforms to its product specification. The optimal models and the process procedures for these two-phase optimal problems based on Particle Swarm Optimization (PSO) are proposed. In each model, every posture to be calculated is modeled as a 6 dimensional particle (three movement and three rotation parameters). Finally, an example that two cabin sections of satellite mainframe structure are being assembled is selected to verify the effectiveness of the proposed approach, models and algorithms. The experiment result shows the approach is promising and will provide a foundation for further study and application. © 2013 The Authors.
Resumo:
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H2NC(CH3)3-n(CH2OH)n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family (n=0, 1, 2), but significantly contrasting structural properties for the member with n=3. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.
Resumo:
MOTIVATION: There is much interest in reducing the complexity inherent in the representation of the 20 standard amino acids within bioinformatics algorithms by developing a so-called reduced alphabet. Although there is no universally applicable residue grouping, there are numerous physiochemical criteria upon which one can base groupings. Local descriptors are a form of alignment-free analysis, the efficiency of which is dependent upon the correct selection of amino acid groupings. RESULTS: Within the context of G-protein coupled receptor (GPCR) classification, an optimization algorithm was developed, which was able to identify the most efficient grouping when used to generate local descriptors. The algorithm was inspired by the relatively new computational intelligence paradigm of artificial immune systems. A number of amino acid groupings produced by this algorithm were evaluated with respect to their ability to generate local descriptors capable of providing an accurate classification algorithm for GPCRs.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems. © 2014 American Physical Society.
Resumo:
Integration of the measurement activity into the production process is an essential rule in digital enterprise technology, especially for large volume product manufacturing, such as aerospace, shipbuilding, power generation and automotive industries. Measurement resource planning is a structured method of selecting and deploying necessary measurement resources to implement quality aims of product development. In this research, a new mapping approach for measurement resource planning is proposed. Firstly, quality aims are identified in the form of a number of specifications and engineering requirements of one quality characteristics (QCs) at a specific stage of product life cycle, and also measurement systems are classified according to the attribute of QCs. Secondly, a matrix mapping approach for measurement resource planning is outlined together with an optimization algorithm for combination between quality aims and measurement systems. Finally, the proposed methodology has been studied in shipbuilding to solve the problem of measurement resource planning, by which the measurement resources are deployed to satisfy all the quality aims. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This paper examines various specifications that are used within the literature to test for spillovers from foreign direct investment (FDI). Analysis provides significant evidence of externalities from inward FDI, but it shows that these externalities are more localized than has previously been believed. Further, the results demonstrate that the econometric treatment of issues such as agglomeration, contiguity and spatial dependence significantly changes the conclusions regarding local and national spillovers from FDI, and productivity growth more generally.
Resumo:
A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.
Resumo:
The non-linear programming algorithms for the minimum weight design of structural frames are presented in this thesis. The first, which is applied to rigidly jointed and pin jointed plane frames subject to deflexion constraints, consists of a search in a feasible design space. Successive trial designs are developed so that the feasibility and the optimality of the designs are improved simultaneously. It is found that this method is restricted lo the design of structures with few unknown variables. The second non-linear programming algorithm is presented .in a general form. This consists of two types of search, one improving feasibility and the other optimality. The method speeds up the 'feasible direction' approach by obtaining a constant weight direction vector that is influenced by dominating constraints. For pin jointed plane and space frames this method is used to obtain a 'minimum weight' design which satisfies restrictions on stresses and deflexions. The matrix force method enables the design requirements to be expressed in a general form and the design problem is automatically formulated within the computer. Examples are given to explain the method and the design criteria are extended to include member buckling. Fundamental theorems are proposed and proved to confirm that structures are inter-related. These theorems are applicable to linear elastic structures and facilitate the prediction of the behaviour of one structure from the results of analysing another, more general, or related structure. It becomes possible to evaluate the significance of each member in the behaviour of a structure and the problem of minimum weight design is extended to include shape. A method is proposed to design structures of optimum shape with stress and deflexion limitations. Finally a detailed investigation is carried out into the design of structures to study the factors that influence their shape.
Resumo:
A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.