3 resultados para direct limits

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the theory of parametric noise amplification to the case of transmission systems employing multiple optical phase conjugators, demonstrating that the excess noise due to this process may be reduced in direct proportion to the number of phase conjugation devices employed. We further identify that the optimum noise suppression is achieved for an odd number of phase conjugators, and that the noise may be further suppressed by up to 3dB by partial digital back propagation (or fractional spans at the ends of the links).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation widely used to modulate cognitive functions. Recent studies, however, suggests that effects are unreliable, small and often non-significant at least when stimulation is applied in a single session to healthy individuals. We examined the effects of frontal and temporal lobe anodal tDCS on naming and reading tasks and considered possible interactions with linguistic activation and selection mechanisms as well possible interactions with item difficulty and participant individual variability. Across four separate experiments (N, Exp 1A = 18; 1B = 20; 1C = 18; 2 = 17), we failed to find any difference between real and sham stimulation. Moreover, we found no evidence of significant effects limited to particular conditions (i.e., those requiring suppression of semantic interference), to a subset of participants or to longer RTs. Our findings sound a cautionary note on using tDCS as a means to modulate cognitive performance. Consistent effects of tDCS may be difficult to demonstrate in healthy participants in reading and naming tasks, and be limited to cases of pathological neurophysiology and/or to the use of learning paradigms.