5 resultados para differential evolution
em Aston University Research Archive
Resumo:
When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.
Resumo:
Differential evolution is an optimisation technique that has been successfully employed in various applications. In this paper, we apply differential evolution to the problem of extracting the optimal colours of a colour map for quantised images. The choice of entries in the colour map is crucial for the resulting image quality as it forms a look-up table that is used for all pixels in the image. We show that differential evolution can be effectively employed as a method for deriving the entries in the map. In order to optimise the image quality, our differential evolution approach is combined with a local search method that is guaranteed to find the local optimal colour map. This hybrid approach is shown to outperform various commonly used colour quantisation algorithms on a set of standard images. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
This thesis presents research within empirical financial economics with focus on liquidity and portfolio optimisation in the stock market. The discussion on liquidity is focused on measurement issues, including TAQ data processing and measurement of systematic liquidity factors (FSO). Furthermore, a framework for treatment of the two topics in combination is provided. The liquidity part of the thesis gives a conceptual background to liquidity and discusses several different approaches to liquidity measurement. It contributes to liquidity measurement by providing detailed guidelines on the data processing needed for applying TAQ data to liquidity research. The main focus, however, is the derivation of systematic liquidity factors. The principal component approach to systematic liquidity measurement is refined by the introduction of moving and expanding estimation windows, allowing for time-varying liquidity co-variances between stocks. Under several liability specifications, this improves the ability to explain stock liquidity and returns, as compared to static window PCA and market average approximations of systematic liquidity. The highest ability to explain stock returns is obtained when using inventory cost as a liquidity measure and a moving window PCA as the systematic liquidity derivation technique. Systematic factors of this setting also have a strong ability in explaining a cross-sectional liquidity variation. Portfolio optimisation in the FSO framework is tested in two empirical studies. These contribute to the assessment of FSO by expanding the applicability to stock indexes and individual stocks, by considering a wide selection of utility function specifications, and by showing explicitly how the full-scale optimum can be identified using either grid search or the heuristic search algorithm of differential evolution. The studies show that relative to mean-variance portfolios, FSO performs well in these settings and that the computational expense can be mitigated dramatically by application of differential evolution.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
Novel molecular complexity measures are designed based on the quantum molecular kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation describes the temporal evolution of the modelled electronic system and determined the time derivatives for the dynamic quantities. This allows to define the average quantum kinematic characteristics closely related to the curvatures of the electron paths, particularly, the torsion reflecting the chirality of the dynamic system. A special attention has been given to the computational scheme for this chirality measure. The calculations on realistic molecular systems demonstrate reasonable behaviour of the proposed molecular complexity indices.