4 resultados para diagnosi,cuore,real-time,3D,feti,ecocardiografia
em Aston University Research Archive
Resumo:
An array of FBG curvature sensors are wavelength-interrogated and the recovered data combined with a three-dimensional algorithm to reconstruct in real time the enveloped object with a 1% to 9% volumetric error. © 2012 OSA.
Resumo:
In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
A real-time three-dimensional (3D) object sensing and reconstruction scheme is presented that can be applied on any arbitrary corporeal shape. Operation is demonstrated on several calibrated objects. The system uses curvature sensors based upon in-line fiber Bragg gratings encapsulated in a low-temperature curing synthetic silicone. New methods to quantitatively evaluate the performance of a 3D object-sensing scheme are developed and appraised. It is shown that the sensing scheme yields a volumetric error of 1% to 9%, depending on the object.
Resumo:
We investigate the problem of obtaining a dense reconstruction in real-time, from a live video stream. In recent years, multi-view stereo (MVS) has received considerable attention and a number of methods have been proposed. However, most methods operate under the assumption of a relatively sparse set of still images as input and unlimited computation time. Video based MVS has received less attention despite the fact that video sequences offer significant benefits in terms of usability of MVS systems. In this paper we propose a novel video based MVS algorithm that is suitable for real-time, interactive 3d modeling with a hand-held camera. The key idea is a per-pixel, probabilistic depth estimation scheme that updates posterior depth distributions with every new frame. The current implementation is capable of updating 15 million distributions/s. We evaluate the proposed method against the state-of-the-art real-time MVS method and show improvement in terms of accuracy. © 2011 Elsevier B.V. All rights reserved.