2 resultados para desensitisation

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenomedullin (AM), a potent vasoactive peptide, is elevated in certain disease states such as sepsis. Its role as a physiologically relevant peptide has been confirmed with the advent of the homozygous lethal AM peptide knockout mouse. So far, there have been few and conflicting studies which examine the regulatory role of AM at the receptor level. In this article, we discuss the few studies that have been presented on the desensitisation of AM receptors and also present novel data on the desensitisation of endogenous AM receptors in Rat-2 fibroblasts. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Prolonged exposure of pancreatic beta-cells in vitro to the sulphonylureas tolbutamide and glibenclamide induces subsequent desensitization of insulinotropic pathways. Clinically, the insulin-sensitizing biguanide drug metformin is often administered alongside sulphonylurea as antidiabetic therapy. The present study examines the functional effects of metformin (200 µM) on tolbutamide- and glibenclamide-induced desensitisation. Methods: Acute and prolonged (18 h) effects of exposure to tolbutamide and glibenclamide alone, or in the presence of metformin, were examined in insulin-secreting BRIN-BD11 cells. Results: In acute 20 min incubations at 1.1 mM glucose, metformin increased (1.2-1.7-fold; p <0.001) the insulin-releasing actions of tolbutamide and glibenclamide. At 16.7 mM glucose, metformin significantly enhanced glibenclamide-induced insulin release at all concentrations (50-400 µM) examined, but tolbutamide-stimulated insulin secretion was only augmented at higher concentrations (300-400 µM). Exposure for 18 h to 100 µM tolbutamide or glibenclamide significantly impaired insulin release in response to glucose and a broad range of insulin secretagogues. Concomitant culture with metformin (200 µM) prevented or partially reversed many of the adverse effects on K channel dependent and independent insulinotropic pathways. Beneficial effects of metformin were also observed in cells exposed to glibenclamide for 18 h with significant improvements in the insulin secretory responsiveness to alanine, GLP-1 and sulphonylureas. The decrease of viable cell numbers observed with glibenclamide was reversed by co-culture with metformin, but cellular insulin content was depressed. Conclusions: The results suggest that metformin can prevent the aspects of sulphonylurea-induced beta-cell desensitization. © 2010 Blackwell Publishing Ltd.