4 resultados para descriptor
em Aston University Research Archive
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
Full text: We thank Tsilimbaris et al1 for their comments on the appropriateness of the term ‘myopic foveoschisis’ to describe the condition that is characterized by the separation of neural retina layers associated with high myopia and posterior staphyloma. They have proposed the term ‘myopic ectatic retinopathy’ as a more literal and functionally more accurate descriptor of the condition to avoid the use of the word ‘schisis’, which may be misleading because it is also used to describe other conditions where there is separation of neural retina layers without the presence of staphyloma.2 Using the word ‘ectatic’ for this condition would imply that we are fairly certain about the pathogenesis and mechanistic factors that underlie its development and progression. However, this is not the case, unfortunately, as our review of the literature has shown. There are several theories ranging from vitreous traction to sclerosing changes of retinal vessels to progression of staphylomas as possible etiological factors. Therefore, it is likely to be multifactorial in nature—hence the success reported with different procedures that address either the vitreous traction factor using vitrectomy, peel plus tamponade or the scleral ectasia factor using posterior buckling techniques. In the absence of a good understanding of underlying pathogenesis, it is probably best to use purely descriptive names rather than mechanistic terms. The use of descriptive terms, even though similar, do not necessarily cause confusion as long as they are widely accepted as differentiating terminology, for example, postoperative pseudophakic cystoid macular edema (Irvine–Gass syndrome) vs cystoid macular edema associated with posterior uveitis in a phakic patient. The introduction of too many mechanistic or pathogenetic terms in the absence of clear understating of etiology can in fact cause more confusion, for example, serous chorioretinopathy vs central serous retinopathy vs serous choroidopathy. The confinement to broad descriptive terms can enhance communication and reduce confusion without committing to any presumption about etiology until it is better understood. This approach is probably best illustrated by the recent advances in the understanding of mactel21, a condition initially described and classified, using descriptive nomenclature, by Don Gass as bilateral, idiopathic acquired juxtafoveolar telangiectasis (Group2A) and as distinctly different from unilateral, congenital parafoveolar telangiectasis (Group 1A; Gass,3 pp 504–506 vs 127–128). Finally, it is worthy to note that for myopic foveoschisis associated with a staphyloma that is associated with outer layer macular detachment, Don Gass also descriptively included the additional observation (before the advent of OCT) that the retinal profile was concave rather than convex in shape, thereby differentiating it from rhegmatogenous detachments with recruitment of subretinal fluid that is associated with posteriorly located breaks and macular holes in myopic eyes. References 1.Tsilimbaris MK, Vavvas DG, Bechrakis NE. Myopic foveoschisis: an ectatic retinopathy, not aschisis. Eye 2016; 30: 328–329. 2.Powner MB, Gillies MC, Tretiach M, Scott A, Guymer RH, Hageman GS et al. Perifoveal müller cell depletion in a case of macular telangiectasia type 2. Ophthalmology 2010; 117(12): 2407–2416. 3.Gass DM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment, 4th edn. Mosby-Yearbook: St. Louis, 1997.
Resumo:
Laplacian-based descriptors, such as the Heat Kernel Signature and the Wave Kernel Signature, allow one to embed the vertices of a graph onto a vectorial space, and have been successfully used to find the optimal matching between a pair of input graphs. While the HKS uses a heat di↵usion process to probe the local structure of a graph, the WKS attempts to do the same through wave propagation. In this paper, we propose an alternative structural descriptor that is based on continuoustime quantum walks. More specifically, we characterise the structure of a graph using its average mixing matrix. The average mixing matrix is a doubly-stochastic matrix that encodes the time-averaged behaviour of a continuous-time quantum walk on the graph. We propose to use the rows of the average mixing matrix for increasing stopping times to develop a novel signature, the Average Mixing Matrix Signature (AMMS). We perform an extensive range of experiments and we show that the proposed signature is robust under structural perturbations of the original graphs and it outperforms both the HKS and WKS when used as a node descriptor in a graph matching task.