5 resultados para depth-first

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of detection and discrimination thresholds yields information about visual signal processing. For luminance contrast, we are 2 - 3 times more sensitive to a small increase in the contrast of a weak 'pedestal' grating, than when the pedestal is absent. This is the 'dipper effect' - a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a 'disparity dipper' - are thresholds for disparity, or disparity modulation (corrugated surfaces), facilitated by the presence of a weak pedestal? Lunn and Morgan (1997 Journal of the Optical Society of America A 14 360 - 371) found no dipper for disparity-modulated gratings, but technical limitations (8-bit greyscale) might have prevented the necessary measurement of very small disparity thresholds. We used a true 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.6 cycle deg-1) of a random texture at various pedestal levels. Which interval contained greater modulation of depth? In the first experiment, a clear dipper was found. Thresholds were about 2X1 lower with weak pedestals than without. But here the phase of modulation (0° or 180°) was randomised from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, thus improving performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect disappeared, confirming Lunn and Morgan's result. The absence of a dipper, coupled with shallow psychometric slopes, suggests that the visual response to small disparities is essentially linear, with no threshold-like nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for the detection of first-order luminance (LM) and second-order modulations of the local amplitude (AM) of a texture (Schofield and Georgeson, 1999 Vision Research 39 2697 - 2716; Georgeson and Schofield, 2002 Spatial Vision 16 59). It has also been shown that LM and AM mixtures with different phase relationships are easily separated in identification tasks, and (informally) appear very different with the in-phase compound (LM + AM), producing the most realistic depth percept. We investigated the role of these LM and AM components in depth perception. Stimuli consisted of a noise texture background with thin bars formed as local increments or decrements in luminance and/or noise amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. When luminance and amplitude changes have the same sign and magnitude (LM + AM) the overall modulation is consistent with multiplicative shading, but this is not so when the two modulations have opposite sign (LM - AM). Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of raised regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was even better than for LM + AM. Further tests suggested that this improvement in performance is not due to an increase in the detectability of luminance in the compound stimuli. Thus, contrary to previous findings, these results suggest the possibility of interaction between first-order and second-order mechanisms in depth perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.