8 resultados para depth perception

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested separate channels for the detection of first-order luminance (LM) and second-order modulations of the local amplitude (AM) of a texture (Schofield and Georgeson, 1999 Vision Research 39 2697 - 2716; Georgeson and Schofield, 2002 Spatial Vision 16 59). It has also been shown that LM and AM mixtures with different phase relationships are easily separated in identification tasks, and (informally) appear very different with the in-phase compound (LM + AM), producing the most realistic depth percept. We investigated the role of these LM and AM components in depth perception. Stimuli consisted of a noise texture background with thin bars formed as local increments or decrements in luminance and/or noise amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. When luminance and amplitude changes have the same sign and magnitude (LM + AM) the overall modulation is consistent with multiplicative shading, but this is not so when the two modulations have opposite sign (LM - AM). Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of raised regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was even better than for LM + AM. Further tests suggested that this improvement in performance is not due to an increase in the detectability of luminance in the compound stimuli. Thus, contrary to previous findings, these results suggest the possibility of interaction between first-order and second-order mechanisms in depth perception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years much has been learned about the way in which depth cues are combined (e.g. Landy et al., 1995). The majority of this work has used subjective measures, a rating scale or a point of subjective equality, to deduce the relative contributions of different cues to perception. We have adopted a very different approach by using two interval forced-choice (2IFC) performance measures and a signal processing framework. We performed summation experiments for depth cue increment thresholds between pairs of pictorial depth cues in displays depicting slanted planar surfaces made from arrays of circular 'contrast' elements. Summation was found to be ideal when size-gradient was paired with contrast-gradient for a wide range of depth-gradient magnitudes in the null stimulus. For a pairing of size-gradient and linear perspective, substantial summation (> 1.5 dB) was found only when the null stimulus had intermediate depth gradients; when flat or steeply inclined surfaces were depicted, summation was diminished or abolished. Summation was also abolished when one of the target cues was (i) not a depth cue, or (ii) added in conflict. We conclude that vision has a depth mechanism for the constructive combination of pictorial depth cues and suggest two generic models of summation to describe the results. Using similar psychophysical methods, Bradshaw and Rogers (1996) revealed a mechanism for the depth cues of motion parallax and binocular disparity. Whether this is the same or a different mechanism from the one reported here awaits elaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of full-color images of objects is described for use in experiments investigating the effects of in-depth rotation on the identification of three-dimensional objects. The corpus contains up to 11 perspective views of 70 nameable objects. We also provide ratings of the "goodness" of each view, based on Thurstonian scaling of subjects' preferences in a paired-comparison experiment. An exploratory cluster analysis on the scaling solutions indicates that the amount of information available in a given view generally is the major determinant of the goodness of the view. For instance, objects with an elongated front-back axis tend to cluster together, and the front and back views of these objects, which do not reveal the object's major surfaces and features, are evaluated as the worst views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examines the effect of the goodness of view on the minimal exposure time required to recognize depth-rotated objects. In a previous study, Verfaillie and Boutsen (1995) derived scales of goodness of view, using a new corpus of images of depth-rotated objects. In the present experiment, a subset of this corpus (five views of 56 objects) is used to determine the recognition exposure time for each view, by increasing exposure time across successive presentations until the object is recognized. The results indicate that, for two thirds of the objects, good views are recognized more frequently and have lower recognition exposure times than bad views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.