7 resultados para density-dependent model
em Aston University Research Archive
Resumo:
The effects of an experimental model of hydrogen-peroxide-induced foot pad oedema on indices of oxidative damage to biomolecules have been investigated. We have demonstrated increased levels of fluorescent protein and lipid peroxides occurring in plasma at 24 and 48 h post-injection. In addition, a decrease in the degree of galactosylation of IgG was observed which kinetically related the degree of inflammation and to the increase in protein autofluorescence (a specific index of oxidative damage). The effects of ebselen, a novel organoselenium compound which protects against oxidative tissue injury in a glutathione-peroxidase-like manner, have also been examined in this model. Pretreatment of animals with a dose of 50 mg/kg ebselen afforded significant and selective protection against lipid peroxidation only. This effect may contribute to the anti-inflammatory effect of this agent in hydroperoxide-linked tissue damage.
Resumo:
Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.
Resumo:
A semi-quantitative model is put forward elucidating the role of spatial inhomogeneity of charge carrier mobility in organic field-effect transistors. The model, based on electrostatic arguments, allows estimating the effective thickness of the conducting channel and its changes in function of source-drain and gate voltages. Local mobility gradients in the direction perpendicular to the insulator/semiconductor interface translate into voltage dependences of the average carrier mobility in the channel, resulting in positive or negative deviations of current-voltage characteristics from their expected shapes. The proposed effect supplements those described in the literature, i.e., density-dependent mobility of charge carriers, short-channel effects, and contribution of contact resistance.
Resumo:
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.
Resumo:
Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.
Resumo:
Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.