3 resultados para dense system
em Aston University Research Archive
Resumo:
We have reduced signal-signal four-wave mixing crosstalk in a fiber optical parametric amplifier (OPA) by using a short nonlinear fiber for the gain medium and a high-power pump. This allowed us to obtain less than 1 dB penalty for amplification of 26 dense wavelength-division multiplexed (WDM) channels modulated at 43.7Gb/s return to zero-differential phase-shift keying, with the OPA placed between transmitter and receiver. We then used the same OPA in several different roles for a long-haul transmission system. We did not insert the OPA within the loop, but investigated this role indirectly by using equivalent results for small numbers of loop recirculations. We found that standard erbium-doped fiber amplifiers currently hold an advantage over this OPA, which becomes negligible for long distances. This paper shows that at this time OPAs can handle amplification of WDM traffic in excess of 1 Tb/s with little degradation. It also indicates that with further improvements, fiber OPAs could be a contender for wideband amplification in future optical communication networks.
Resumo:
We examine the impact of the fiber type and dispersion management on the performance of a 16 × 40 Gb/s dense wavelength-division-multiplexing nonreturn-to-zero transmission system. The transmission line is composed of G.652 or G.655 fiber with periodic dispersion compensation and hybrid Raman erbium-doped fiber amplifier amplification.
Resumo:
In this paper, we experimentally demonstrate the seamless integration of full duplex system frequency division duplex (FDD) long-term evolution (LTE) technology with radio over fiber (RoF) for eNodeB (eNB) coverage extension. LTE is composed of quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) and 64-QAM, modulated onto orthogonal frequency division multiplexing (OFDM) and single-carrier-frequency division multiplexing for downlink (DL) and uplink (UL) transmissions, respectively. The RoF system is composed of dedicated directly modulated lasers for DL and UL with dense wavelength division multiplexing (DWDM) for instantaneous connections and for Rayleigh backscattering and nonlinear interference mitigation. DL and UL signals have varying carrier frequencies and are categorized as broad frequency spacing (BFS), intermediate frequency spacing (IFS), and narrow frequency spacing (NFS). The adjacent channel leakage ratio (ACLR) for DL and UL with 64-QAM are similar for all frequency spacings while cross talk is observed for NFS. For the best case scenario for DL and UL transmissions we achieve error vector magnitude (EVM) values of ~2.30%, ~2.33%, and ~2.39% for QPSK, 16-QAM, and 64-QAM, respectively, while for the worst case scenario with a NFS EVM is increased by 0.40% for all schemes. © 2009-2012 OSA.