14 resultados para delayed match-to-sample
em Aston University Research Archive
Resumo:
A paradox of memory research is that repeated checking results in a decrease in memory certainty, memory vividness and confidence [van den Hout, M. A., & Kindt, M. (2003a). Phenomenological validity of an OCD-memory model and the remember/know distinction. Behaviour Research and Therapy, 41, 369–378; van den Hout, M. A., & Kindt, M. (2003b). Repeated checking causes memory distrust. Behaviour Research and Therapy, 41, 301–316]. Although these findings have been mainly attributed to changes in episodic long-term memory, it has been suggested [Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323] that representations in working memory could already suffer from detrimental checking. In two experiments we set out to test this hypothesis by employing a delayed-match-to-sample working memory task. Letters had to be remembered in their correct locations, a task that was designed to engage the episodic short-term buffer of working memory [Baddeley, A. D. (2000). The episodic buffer: a new component in working memory? Trends in Cognitive Sciences, 4, 417–423]. Of most importance, we introduced an intermediate distractor question that was prone to induce frustrating and unnecessary checking on trials where no correct answer was possible. Reaction times and confidence ratings on the actual memory test of these trials confirmed the success of this manipulation. Most importantly, high checkers [cf. VOCI; Thordarson, D. S., Radomsky, A. S., Rachman, S., Shafran, R, Sawchuk, C. N., & Hakstian, A. R. (2004). The Vancouver obsessional compulsive inventory (VOCI). Behaviour Research and Therapy, 42(11), 1289–1314] were less accurate than low checkers when frustrating checking was induced, especially if the experimental context actually emphasized the irrelevance of the misleading question. The clinical relevance of this result was substantiated by means of an extreme groups comparison across the two studies. The findings are discussed in the context of detrimental checking and lack of distractor inhibition as a way of weakening fragile bindings within the episodic short-term buffer of Baddeley's (2000) model. Clinical implications, limitations and future research are considered.
Resumo:
The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION: Bipolar disorder requires long-term treatment but non-adherence is a common problem. Antipsychotic long-acting injections (LAIs) have been suggested to improve adherence but none are licensed in the UK for bipolar. However, the use of second-generation antipsychotics (SGA) LAIs in bipolar is not uncommon albeit there is a lack of systematic review in this area. This study aims to systematically review safety and efficacy of SGA LAIs in the maintenance treatment of bipolar disorder. METHODS AND ANALYSIS: The protocol is based on Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and will include only randomised controlled trials comparing SGA LAIs in bipolar. PubMed, EMBASE, CINAHL, Cochrane Library (CENTRAL), PsychINFO, LiLACS, http://www.clinicaltrials.gov will be searched, with no language restriction, from 2000 to January 2016 as first SGA LAIs came to the market after 2000. Manufacturers of SGA LAIs will also be contacted. Primary efficacy outcome is relapse rate or delayed time to relapse or reduction in hospitalisation and primary safety outcomes are drop-out rates, all-cause discontinuation and discontinuation due to adverse events. Qualitative reporting of evidence will be based on 21 items listed on standards for reporting qualitative research (SRQR) focusing on study quality (assessed using the Jadad score, allocation concealment and data analysis), risk of bias and effect size. Publication bias will be assessed using funnel plots. If sufficient data are available meta-analysis will be performed with primary effect size as relative risk presented with 95% CI. Sensitivity analysis, conditional on number of studies and sample size, will be carried out on manic versus depressive symptoms and monotherapy versus adjunctive therapy.
Resumo:
Recent experimental studies have shown that development towards adult performance levels in configural processing in object recognition is delayed through middle childhood. Whilst partchanges to animal and artefact stimuli are processed with similar to adult levels of accuracy from 7 years of age, relative size changes to stimuli result in a significant decrease in relative performance for participants aged between 7 and 10. Two sets of computational experiments were run using the JIM3 artificial neural network with adult and 'immature' versions to simulate these results. One set progressively decreased the number of neurons involved in the representation of view-independent metric relations within multi-geon objects. A second set of computational experiments involved decreasing the number of neurons that represent view-dependent (nonrelational) object attributes in JIM3's Surface Map. The simulation results which show the best qualitative match to empirical data occurred when artificial neurons representing metric-precision relations were entirely eliminated. These results therefore provide further evidence for the late development of relational processing in object recognition and suggest that children in middle childhood may recognise objects without forming structural description representations.
Resumo:
Keyword identification in one of two simultaneous sentences is improved when the sentences differ in F0, particularly when they are almost continuously voiced. Sentences of this kind were recorded, monotonised using PSOLA, and re-synthesised to give a range of harmonic ?F0s (0, 1, 3, and 10 semitones). They were additionally re-synthesised by LPC with the LPC residual frequency shifted by 25% of F0, to give excitation with inharmonic but regularly spaced components. Perceptual identification of frequency-shifted sentences showed a similar large improvement with nominal ?F0 as seen for harmonic sentences, although overall performance was about 10% poorer. We compared performance with that of two autocorrelation-based computational models comprising four stages: (i) peripheral frequency selectivity and half-wave rectification; (ii) within-channel periodicity extraction; (iii) identification of the two major peaks in the summary autocorrelation function (SACF); (iv) a template-based approach to speech recognition using dynamic time warping. One model sampled the correlogram at the target-F0 period and performed spectral matching; the other deselected channels dominated by the interferer and performed matching on the short-lag portion of the residual SACF. Both models reproduced the monotonic increase observed in human performance with increasing ?F0 for the harmonic stimuli, but not for the frequency-shifted stimuli. A revised version of the spectral-matching model, which groups patterns of periodicity that lie on a curve in the frequency-delay plane, showed a closer match to the perceptual data for frequency-shifted sentences. The results extend the range of phenomena originally attributed to harmonic processing to grouping by common spectral pattern.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
This study examined the internal higher-order structures of five personality inventories (the Hogan Personality Inventory, the Occupational Personality Questionnaire, the Sixteen Personality Factor Questionnaire, the Personality and Preferences Inventory, Profile Match). A sample of 356 individuals from the UK working population completed various combinations of the five inventories. Overall, the results indicated sensible and interpretable factor structures for the inventories. Cross-inventory factor analyses of the extracted factors revealed a variant of the Big Five model underpinning them, enabling examination of inventory convergence and divergence. Our study also examined and compared representations of the General Factor of Personality in each of the inventories. © 2011 Elsevier Ltd.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
To reveal the moisture migration mechanism of the unsaturated red clays, which are sensitive to water content change and widely distributed in South China, and then rationally use them as a filling material for highway embankments, a method to measure the water content of red clay cylinders using X-ray computed tomography (CT) was proposed and verified. Then, studies on the moisture migrations in the red clays under the rainfall and ground water level were performed at different degrees of compaction. The results show that the relationship between dry density, water content, and CT value determined from X-ray CT tests can be used to nondestructively measure the water content of red clay cylinders at different migration time, which avoids the error reduced by the sample-to-sample variation. The rainfall, ground water level, and degree of compaction are factors that can significantly affect the moisture migration distance and migration rate. Some techniques, such as lowering groundwater table and increasing degree of compaction of the red clays, can be used to prevent or delay the moisture migration in highway embankments filled with red clays.
Resumo:
Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.
Resumo:
Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.
Resumo:
Traditional approaches to calculate total factor productivity (TFP) change through Malmquist indexes rely on distance functions. In this paper we show that the use of distance functions as a means to calculate TFP change may introduce some bias in the analysis, and therefore we propose a procedure that calculates TFP change through observed values only. Our total TFP change is then decomposed into efficiency change, technological change, and a residual effect. This decomposition makes use of a non-oriented measure in order to avoid problems associated with the traditional use of radial oriented measures, especially when variable returns to scale technologies are to be compared. The proposed approach is applied in this paper to a sample of Portuguese bank branches.