13 resultados para data fitting
em Aston University Research Archive
Resumo:
Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, ‘r squared’ estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. In addition, it is important to check whether the data fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary.
Resumo:
Non-linear relationships are common in microbiological research and often necessitate the use of the statistical techniques of non-linear regression or curve fitting. In some circumstances, the investigator may wish to fit an exponential model to the data, i.e., to test the hypothesis that a quantity Y either increases or decays exponentially with increasing X. This type of model is straight forward to fit as taking logarithms of the Y variable linearises the relationship which can then be treated by the methods of linear regression.
Resumo:
1. Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, r squared estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. 2. Always check whether the data collected fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary. 3. If the regression line is to be used for prediction, it is important to determine whether the prediction involves an individual y value or a mean. Care should be taken if predictions are made close to the extremities of the data and are subject to considerable error if x falls beyond the range of the data. Multiple predictions require correction of the P values. 3. If several individual regression lines have been calculated from a number of similar sets of data, consider whether they should be combined to form a single regression line. 4. If the data exhibit a degree of curvature, then fitting a higher-order polynomial curve may provide a better fit than a straight line. In this case, a test of whether the data depart significantly from a linear regression should be carried out.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.
Resumo:
In previous sea-surface variability studies, researchers have failed to utilise the full ERS-1 mission due to the varying orbital characteristics in each mission phase, and most have simply ignored the Ice and Geodetic phases. This project aims to introduce a technique which will allow the straightforward use of all orbital phases, regardless of orbit type. This technique is based upon single satellite crossovers. Unfortunately the ERS-1 orbital height is still poorly resolved (due to higher air drag and stronger gravitational effects) when compared with that of TOPEX/Poseidon (T/P), so to make best use of the ERS-1 crossover data corrections to the ERS-1 orbital heights are calculated by fitting a cubic-spline to dual-crossover residuals with T/P. This correction is validated by comparison of dual satellite crossovers with tide gauge data. The crossover processing technique is validated by comparing the extracted sea-surface variability information with that from T/P repeat pass data. The two data sets are then combined into a single consistent data set for analysis of sea-surface variability patterns. These patterns are simplified by the use of an empirical orthogonal function decomposition which breaks the signals into spatial modes which are then discussed separately. Further studies carried out on these data include an analysis of the characteristics of the annual signal, discussion of evidence for Rossby wave propagation on a global basis, and finally analysis of the evidence for global mean sea level rise.
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
Sensory sensitivity is typically measured using behavioural techniques (psychophysics), which rely on observers responding to very large numbers of stimulus presentations. Psychophysics can be problematic when working with special populations, such as children or clinical patients, because they may lack the compliance or cognitive skills to perform the behavioural tasks. We used an auditory gap-detection paradigm to develop an accurate measure of sensory threshold derived from passively-recorded MEG data. Auditory evoked responses were elicited by silent gaps of varying durations in an on-going noise stimulus. Source modelling was used to spatially filter the MEG data and sigmoidal ‘cortical psychometric functions’ relating response amplitude to gap duration were obtained for each individual participant. Fitting the functions with a curve and estimating the gap duration at which the evoked response exceeded one standard deviation of the prestimulus brain activity provided an excellent prediction of psychophysical threshold. Thus we have demonstrated that accurate sensory thresholds can be reliably extracted from MEG data recorded while participants listen passively to a stimulus. Because we required no behavioural task, the method is suitable for studies of populations where variations in cognitive skills or vigilance make traditional psychophysics unsuitable.
Resumo:
We discuss aggregation of data from neuropsychological patients and the process of evaluating models using data from a series of patients. We argue that aggregation can be misleading but not aggregating can also result in information loss. The basis for combining data needs to be theoretically defined, and the particular method of aggregation depends on the theoretical question and characteristics of the data. We present examples, often drawn from our own research, to illustrate these points. We also argue that statistical models and formal methods of model selection are a useful way to test theoretical accounts using data from several patients in multiple-case studies or case series. Statistical models can often measure fit in a way that explicitly captures what a theory allows; the parameter values that result from model fitting often measure theoretically important dimensions and can lead to more constrained theories or new predictions; and model selection allows the strength of evidence for models to be quantified without forcing this into the artificial binary choice that characterizes hypothesis testing methods. Methods that aggregate and then formally model patient data, however, are not automatically preferred to other methods. Which method is preferred depends on the question to be addressed, characteristics of the data, and practical issues like availability of suitable patients, but case series, multiple-case studies, single-case studies, statistical models, and process models should be complementary methods when guided by theory development.
Resumo:
Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. Results: Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. Conclusions: Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.
Resumo:
In many of the Statnotes described in this series, the statistical tests assume the data are a random sample from a normal distribution These Statnotes include most of the familiar statistical tests such as the ‘t’ test, analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’). Nevertheless, many variables exhibit a more or less ‘skewed’ distribution. A skewed distribution is asymmetrical and the mean is displaced either to the left (positive skew) or to the right (negative skew). If the mean of the distribution is low, the degree of variation large, and when values can only be positive, a positively skewed distribution is usually the result. Many distributions have potentially a low mean and high variance including that of the abundance of bacterial species on plants, the latent period of an infectious disease, and the sensitivity of certain fungi to fungicides. These positively skewed distributions are often fitted successfully by a variant of the normal distribution called the log-normal distribution. This statnote describes fitting the log-normal distribution with reference to two scenarios: (1) the frequency distribution of bacterial numbers isolated from cloths in a domestic environment and (2), the sizes of lichenised ‘areolae’ growing on the hypothalus of Rhizocarpon geographicum (L.) DC.
Resumo:
Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.
Resumo:
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.