27 resultados para d(x2-y2) is-wave superconductor
em Aston University Research Archive
Resumo:
We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.
Resumo:
We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.
Resumo:
This paper extends previous analyses of the choice between internal and external R&D to consider the costs of internal R&D. The Heckman two-stage estimator is used to estimate the determinants of internal R&D unit cost (i.e. cost per product innovation) allowing for sample selection effects. Theory indicates that R&D unit cost will be influenced by scale issues and by the technological opportunities faced by the firm. Transaction costs encountered in research activities are allowed for and, in addition, consideration is given to issues of market structure which influence the choice of R&D mode without affecting the unit cost of internal or external R&D. The model is tested on data from a sample of over 500 UK manufacturing plants which have engaged in product innovation. The key determinants of R&D mode are the scale of plant and R&D input, and market structure conditions. In terms of the R&D cost equation, scale factors are again important and have a non-linear relationship with R&D unit cost. Specificities in physical and human capital also affect unit cost, but have no clear impact on the choice of R&D mode. There is no evidence of technological opportunity affecting either R&D cost or the internal/external decision.
Resumo:
A number of investigators have studied the application of oscillatory energy to a metal undergoing plastic deformation. Their results have shown that oscillatory stresses reduce both the stress required to initiate plastic deformation and the friction forces between the tool and workpiece. The first two sections in this thesis discuss historically and technically the devolopment of the use of oscillatory energy techniques to aid metal forming with particular reference to wire drawing. The remainder of the thesis discusses the research undertaken to study the effect of applying longitudinal oscillations to wire drawing. Oscillations were supplied from an electric hydraulic vibrator at frequencies in the range 25 to 500 c/s., and drawing tests were performed at drawing speeds up to 50 ft/m. on a 2000 lbf. bull-block. Equipment was designed to measure the drawing force, drawing torque, amplitude of die and drum oscillation and drawing speed. Reasons are given for selecting mild steel, pure and hard aluminium, stainless steel and hard copper as the materials to be drawn, and the experimental procedure and calibration of measuring equipment arc described. Results show that when oscillatory stresses are applied at frequencies within the range investigated : (a) There is no reduction in the maximum drawing load. (b) Using sodium stearate lubricant there is a negligible reduction in the coefficient of friction between the die and wire. (c) Pure aluminium does not absorb sufficient oscillatory energy to ease the movement of dislocations. (d) Hard aluminium is not softened by oscillatory energy accelerating the diffusion process. (e) Hard copper is not cyclically softened. A vibration analysis of the bull-block and wire showed that oscillatory drawiing in this frequency range, is a mechanical process of straining; and unstraining the drawn wire, and is dependent upon the stiffness of the material being drawn and the drawing machine. Directions which further work should take are suggested.
Resumo:
There is controversy over whether integrated manufacturing (IM), comprising advanced manufacturing technology, just-in-time inventory control and total quality management, empowers or deskills shop floor work. Moreover, both IM and empowerment are promoted on the assumption that they enhance competitiveness. We examine these issues in a study of 80 manufacturing companies. The extent of use of IM was positively associated with empowerment (i.e., job enrichment and employee skill enhancement), but, with the minor exception of AMT, bore little relationship with subsequent company performance. In contrast, the extent of empowerment within companies predicted the subsequent level of company performance controlling for prior performance, with the effect on productivity mediating that on profit. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
The myopic eye is generally considered to be a vulnerable eye and, at levels greater than 6 D, one that is especially susceptible to a range of ocular pathologies. There is concern therefore that the prevalence of myopia in young adolescent eyes has increased substantially over recent decades and is now approaching 10-25% and 60-80%, respectively, in industrialized societies of the West and East. Whereas it is clear that the major structural correlate of myopia is longitudinal elongation of the posterior vitreous chamber, other potential correlates include profiles of lenticular and corneal power, the relationship between longitudinal and transverse vitreous chamber dimensions and ocular volume. The most potent predictors for juvenile-onset myopia continue to be a refractive error ≤+0.50 D at 5 years of age and family history. Significant and continuing progress is being made on the genetic characteristics of high myopia with at least four chromosomes currently identified. Twin studies and genetic modelling have computed a heritability index of at least 80% across the whole ametropic continuum. The high index does not, however, preclude an environmental precursor, sustained near work with high cognitive demand being the most likely. The significance of associations between accommodation, oculomotor dysfunction and human myopia is equivocal despite animal models that have demonstrated that sustained hyperopic defocus can induce vitreous chamber growth. Recent optical and pharmaceutical approaches to the reduction of myopia progression in children are likely precedents for future research, for example progressive addition spectacle lens trials and the use of the topical MI muscarinic antagonist pirenzepine.
Resumo:
Biotechnology is one of a series of new `generic technologies' that have been identified by western governments as possessing stategic economic opportunities. In this thesis I examine the characteristics of the technology and the government policies that have been developed to both promote and exploit the underpinning scientific research for biotechnology. The approach I have taken involves an in-depth analysis of the role of university-industry research relations in the development of biotechnology. To this end I carried out a detailed survey of biotechnology companies in the UK on the nature of their interactions and objectives. Through individual case studies of the SERC and DTI club mechanisms in biotechnology, I provide a contemporary appraisal of the development of new mechanisms involving co-ordination and cooperation between industry, government and academia, established to couple state funded science and national economic development. The public policy implications of the club funding systems for science in the UK are examined.
Resumo:
A preliminary study by Freeman et al (1996b) has suggested that when complex patterns of motion elicit impressions of 2-dimensionality, odd-item-out detection improves given targets can be differentiated on the basis of surface properties. Their results can be accounted for, it if is supposed that observers are permitted efficient access to 3-D surface descriptions but access to 2-D motion descriptions is restricted. To test the hypothesis, a standard search technique was employed, in which targets could be discussed on the basis of slant sign. In one experiment, slant impressions were induced through the summing of deformation and translation components. In a second theory were induced through the summing of shear and translation components. Neither showed any evidence of efficient access. A third experiment explored the possibility that access to these representations may have been hindered by a lack of grouping between the stimuli. Attempts to improve grouping failed to produce convincing evidence in support of life. An alternative explanation is that complex patterns of motion are simply not processed simultaneously. Psychophysical and physiological studies have, however, suggested that multiple mechanisms selective for complex motion do exist. Using a subthreshold summation technique I found evidence supporting the notion that complex motions are processed in parallel. Furthermore, in a spatial summation experiment, coherence thresholds were measured for displays containing different numbers of complex motion patches. Consistent with the idea that complex motion processing proceeds in parallel, increases in the number of motion patches were seen to decrease thresholds, both for expansion and rotation. Moreover, the rates of decrease were higher than those typically expected from probability summation, thus implying mechanisms are available, which can pool signals from spatially distinct complex motion flows.
Resumo:
The binding theme of this thesis is the examination of both phakic and pseudophakic accommodation by means of theoretical modelling and the application of a new biometric measuring technique. Anterior Segment Optical Coherence Tomography (AS-OCT) was used to assess phakic accommodative changes in 30 young subjects (19.4 2.0 years; range, 18 to 25 years). A new method of assessing curvature change with this technique was employed with limited success. Changes in axial accommodative spacing, however, proved to be very similar to those of the Scheimpflug-based data. A unique biphasic trend in the position of the posterior crystalline lens surface during accommodation was discovered, which has not been alluded to in the literature. All axial changes with accommodation were statistically significant (p < 0.01) with the exception of corneal thickness (p = 0.81). A two-year follow-up study was undertaken for a cohort of subjects previously implanted with a new accommodating intraocular lens (AIOL) (Lenstec Tetraflex KH3500). All measures of best corrected distance visual acuity (BCDVA; +0.04 0.24 logMAR), distance corrected near visual acuity (DCNVA; +0.61 0.17 logMAR) and contrast sensitivity (+1.35 0.21 log units) were good. The subjective accommodation response quantified with the push-up technique (1.53 0.64 D) and defocus curves (0.77 0.29 D) was greater than the objective stimulus response (0.21 0.19 D). AS-OCT measures with accommodation stimulus revealed a small mean posterior movement of the AIOLs (0.02 0.03 mm for a 4.0 D stimulus); this is contrary to proposed mechanism of the anterior focus-shift principle.
Resumo:
This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
This paper examines the extent to which both network structure and spatial factors impact on the organizational performance of universities as measured by the generation of industrial research income. Drawing on data concerning the interactions of universities in the UK with large research and development (R&D)-intensive firms, the paper employs both social network analysis and regression analysis. It is found that the structural position of a university within networks with large R&D-intensive firms is significantly associated with the level of research income gained from industry. Spatial factors, on the other hand, are not found to be clearly associated with performance, suggesting that universities operate on a level playing field across regional environments once other factors are controlled for.
Resumo:
The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.
Resumo:
In stereo vision, regions with ambiguous or unspecified disparity can acquire perceived depth from unambiguous regions. This has been called stereo capture, depth interpolation or surface completion. We studied some striking induced depth effects suggesting that depth interpolation and surface completion are distinct stages of visual processing. An inducing texture (2-D Gaussian noise) had sinusoidal modulation of disparity, creating a smooth horizontal corrugation. The central region of this surface was replaced by various test patterns whose perceived corrugation was measured. When the test image was horizontal 1-D noise, shown to one eye or to both eyes without disparity, it appeared corrugated in much the same way as the disparity-modulated (DM) flanking regions. But when the test image was 2-D noise, or vertical 1-D noise, little or no depth was induced. This suggests that horizontal orientation was a key factor. For a horizontal sine-wave luminance grating, strong depth was induced, but for a square-wave grating, depth was induced only when its edges were aligned with the peaks and troughs of the DM flanking surface. These and related results suggest that disparity (or local depth) propagates along horizontal 1-D features, and then a 3-D surface is constructed from the depth samples acquired. The shape of the constructed surface can be different from the inducer, and so surface construction appears to operate on the results of a more local depth propagation process.
Resumo:
There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.