14 resultados para cutaneous wound

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The induction of analgesia for many chronic cutaneous lesions requires treatment with an opioid analgesic. In many patients suffering with these wounds such drugs are either contraindicated or shunned because of their association with death. There are now case reports involving over 100 patients with many different types of chronic superficial wounds, which suggest that the topical application of an opioid in a suitable gel leads to a significant reduction in the level of perceived pain. Key findings: Some work has been undertaken to elucidate the mechanisms by which such a reduction is achieved. To date there have been no proven deleterious effects of such an analgesic system upon wound healing. Although morphine is not absorbed through the intact epidermis, an open wound provides no such barrier and for large wounds drug absorption can be problematic. However, for most chronic cutaneous lesions, where data has been gathered, the blood levels of the drug applied ranges from undetectable to below that required for a systemic effect. Summary If proven, the use of opioids in this way would provide adequate analgesia for a collection of wounds, which are difficult to treat in patients who are often vulnerable. Proof of this concept is now urgently required. © 2011 Royal Pharmaceutical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repair of tissue after injury depends on a series of concerted but overlapping events including, inflammation, re-epithelialization, neovascularization and synthesis and stabilization of a fibrous extracellular matrix (ECM) that is remodeled to emulate normal tissue over time. Particular members of the transglutaminase (TG) family are upregulated during wound healing and act as a novel class of wound-healing mediators during the repair process. This group of enzymes which crosslink proteins via epsilon(gamma-glutamyl) lysine bridges are involved in wound healing through their ability to stabilize proteins and also by regulating the behavior of a wide variety of cell types that are recruited to the damaged area in order to carry out tissue repair. In this article we discuss the function of the most widely expressed member of the TG family "tissue transglutaminase" (TG2) in wound repair. Using both early and recent evidence from the literature we demonstrate how the multifunctional TG2 affects the stability of the ECM, cell-ECM interactions and as a consequence cell behavior within the different phases of wound healing, and highlight how TG2 itself might be exploited for therapeutic use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancement of collagen's physical characteristics has been traditionally approached using various physico-chemical methods frequently compromising cell viability. Microbial transglutaminase (mTGase), a transamidating enzyme obtained from Streptomyces mobaraensis, was used in the cross-linking of collagen-based scaffolds. The introduction of these covalent bonds has previously indicated increased proteolytic and mechanical stability and the promotion of cell colonisation. The hypothesis behind this research is that an enzymatically stabilised collagen scaffold will provide a dermal precursor with enhanced wound healing properties. Freeze-dried scaffolds, with and without the loading of a site-directed mammalian transglutaminase inhibitor to modulate matrix deposition, were applied to full thickness wounds surgically performed on rats’ dorsum and explanted at three different time points (3, 7 and 21 days). Wound healing parameters such as wound closure, epithelialisation, angiogenesis, inflammatory and fibroblastic cellular infiltration and scarring were analysed and quantified using stereological methods. The introduction of this enzymatic cross-linking agent stimulated neovascularisation and epithelialisation resisting wound contraction. Hence, these characteristics make this scaffold a potential candidate to be considered as a dermal precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter considers the available evidence and underlying physicochemical principles that support the proposition that a biomimetic wound dressing based on glycosaminoglycan models offers a potential means of influencing wound bioactivity. Available evidence showing advantages in wound healing for experimental proteoglycanbased dressing materials is described, together with an overview of the bioactive role of sulphated macromolecules. This leads to an assessment of the analogies between the sulphonate group and the sulphate group and an explanation of their unique water binding behaviour. The available information suggests the desirability of an integrated physicochemical, biochemical and biological approach to the design and synthesis of new wound healing biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter deals initially with the underlying principles of adhesion and adhesives and the understanding of interfacial behaviour. This provides a basis upon which to understand biological interactions (. Chapter 12). The two broad types of adhesive materials encountered in wound healing are pressure-sensitive adhesives (PSA) and tissue sealants. The function of pressure-sensitive adhesives is to form an adhesive bond between tissue and biomaterial under the influence of pressure. Tissue sealants are liquids that convert to solid form at the tissue surface and in so doing form either an effective seal against fluid leakage or a bond between adjacent tissue surfaces. The different requirements and characteristics of these systems are discussed. © 2011 Woodhead Publishing Limited All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operation of reverse osmosis (RO) in cyclic batch mode can in principle provide both high energy efficiency and high recovery. However, one factor that causes the performance to be less than ideal is longitudinal dispersion in the RO module. At the end of the batch pressurisation phase it is necessary to purge and then refill the module. During the purge and refill phases, dispersion causes undesirable mixing of concentrated brine with less concentrated feed water, therefore increasing the salt concentration and energy usage in the subsequent pressurisation phase of the cycle. In this study, we quantify the significance of dispersion through theory and experiment. We provide an analysis that relates the energy efficiency of the batch operation to the amount of dispersion. With the help of a model based on the analysis by Taylor, dispersion is quantified according to flow rate. The model is confirmed by experiments with two types of proprietary spiral wound RO modules, using sodium chloride (NaCl) solutions of concentration 1000 to 20,000 ppm. In practice the typical energy usage increases by 4% to 5.5% compared to the ideal case of zero dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides. In our previous work, we have shown the tethering of laminin-332 α3 chain to type I collagen scaffold using microbial transglutaminase (mTGase), promotes cell adhesion, migration, and proliferation. In this study, we evaluated the wound healing properties of tailored laminin-332 α3 chain (peptide A: PPFLMLLKGSTR) tethered to a type I collagen scaffold using mTGase by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide B: PPFLMLLKGSTREAQQIVM) or lysine (peptide C: PPFLMLLKGSTRKKKKG) in rat full-thickness wound model at two different time points (7 and 21 days). Histological evaluations were assessed for wound closure, epithelialization, angiogenesis, inflammatory, fibroblastic cellular infiltrations, and quantified using stereological methods (p < 0.05). Peptide A and B tethered to collagen scaffold using mTGase stimulated neovascularization, decreased the inflammatory cell infiltration and prominently enhanced the fibroblast proliferation which significantly accelerated the wound healing process. We conclude that surface modification by incorporating motif of laminin-332 α3 chain (peptide A: PPFLMLLK GSTR) domain and transglutaminase substrate to the laminin-332 α3 chain (peptide B: PPFLMLLKGSTREAQQIVM) using mTGase may be a potential candidate for tissue engineering applications and skin regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:2788-2795, 2013. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: There is evidence to suggest a beneficial role for growth factors, including vascular endothelial growth factor (VEGF), in tissue repair and proliferation after injury within the lung. Whether this effect is mediated predominantly by actions on endothelial cells or epithelial cells is unknown. This study tested the hypothesis that VEGF acts as an autocrine trophic factor for human adult alveolar epithelial cells and that under situations of pro-apoptotic stress, VEGF reduces cell death. Design: In vitro cell culture study looking at the effects of 0.03% H2O2 on both A549 and primary distal lung epithelial cells.Measurement and Main Results: Primary adult human distal lung epithelial cells express both the soluble and membrane-associated VEGF isoforms and VEGF receptors 1 and 2. At physiologically relevant doses, soluble VEGF isoforms stimulate wound repair and have a proliferative action. Specific receptor ligands confirmed that this effect was mediated by VEGF receptor 1. In addition to proliferation, we demonstrate that VEGF reduces A549 and distal lung epithelial cell apoptosis when administered after 0.03% H2O2 injury. This effect occurs due to reduced caspase-3 activation and is phosphatidylinositol 3′–kinase dependent. Conclusion: In addition to its known effects on endothelial cells, VEGF acts as a growth and anti-apoptotic factor on alveolar epithelial cells. VEGF treatment may have potential as a rescue therapy for diseases associated with alveolar epithelial damage such as acute respiratory distress syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch-mode reverse osmosis (batch-RO) operation is considered a promising desalination method due to its low energy requirement compared to other RO system arrangements. To improve and predict batch-RO performance, studies on concentration polarization (CP) are carried out. The Kimura-Sourirajan mass-transfer model is applied and validated by experimentation with two different spiral-wound RO elements. Explicit analytical Sherwood correlations are derived based on experimental results. For batch-RO operation, a new genetic algorithm method is developed to estimate the Sherwood correlation parameters, taking into account the effects of variation in operating parameters. Analytical procedures are presented, then the mass transfer coefficient models are developed for different operation processes, i.e., batch-RO and continuous RO. The CP related energy loss in batch-RO operation is quantified based on the resulting relationship between feed flow rates and mass transfer coefficients. It is found that CP increases energy consumption in batch-RO by about 25% compared to the ideal case in which CP is absent. For continuous RO process, the derived Sherwood correlation predicted CP accurately. In addition, we determined the optimum feed flow rate of our batch-RO system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the wound dressing as a biomaterial with the wound bed is the central issue of this chapter. The interfacial phenomenon that encompasses the biological and biochemical consequences that arise when a biomaterial is introduced to a host biological environment is discussed. A great deal can be learned from observations arising from the behaviour of biomaterials at other body sites; one particularly relevant body site in the context of wound healing is the anterior eye. The cornea, tear film and posterior surface of the contact lens provide an informative model of the parallel interface that exists between the chronic wound bed, wound fluid and the dressing biomaterial. © 2011 Woodhead Publishing Limited All rights reserved.