2 resultados para crowdsourcing, urban-sensing, sensori android, database
em Aston University Research Archive
Resumo:
The technique of remote sensing provides a unique view of the earth's surface and considerable areas can be surveyed in a short amount of time. The aim of this project was to evaluate whether remote sensing, particularly using the Airborne Thematic Mapper (ATM) with its wide spectral range, was capable of monitoring landfill sites within an urban environment with the aid of image processing and Geographical Information Systems (GIS) methods. The regions under study were in the West Midlands conurbation and consisted of a large area in what is locally known as the Black Country containing heavy industry intermingled with residential areas, and a large single active landfill in north Birmingham. When waste is collected in large volumes it decays and gives off pollutants. These pollutants, landfill gas and leachate (a liquid effluent), are known to be injurious to vegetation and can cause stress and death. Vegetation under stress can exhibit a physiological change, detectable by the remote sensing systems used. The chemical and biological reactions that create the pollutants are exothermic and the gas and leachate, if they leave the waste, can be warmer than their surroundings. Thermal imagery from the ATM (daylight and dawn) and thermal video were obtained and used to find thermal anomalies on the area under study. The results showed that vegetation stress is not a reliable indicator of landfill gas migration, as sites within an urban environment have a cover too complex for the effects to be identified. Gas emissions from two sites were successfully detected by all the thermal imagery with the thermal ATM being the best. Although the results were somewhat disappointing, recent technical advancements in the remote sensing systems used in this project would allow geo-registration of ATM imagery taken on different occasions and the elimination of the effects of solar insolation.
Resumo:
The project set out with two main aims. The first aim was to determine whether large scale multispectral aerial photography could be used to successfully survey and monitor urban wildlife habitats. The second objective was to investigate whether this data source could be used to predict population numbers of selected species expected to be found in a particular habitat type. Panchromatic, colour and colour infra-red, 1:2500 scale aerial photographs, taken in 1981 and 1984, were used. For the orderly extraction of information from the imagery, an urban wildlife habitat classification was devised. This was based on classifications already in use in urban environments by the Nature Conservancy Council. Pilot tests identified that the colour infra-red imagery provided the most accurate results about urban wildlife habitats in the study area of the Blackbrook Valley, Dudley. Both the 1981 and 1984 colour infra-red photographs were analysed and information was obtained about the type, extent and distribution of habitats. In order to investigate whether large scale aerial photographs could be used to predict likely animal population numbers in urban environments, it was decided to limit the investigation to the possible prediction of bird population numbers in Saltwells Local Nature Reserve. A good deal of research has already been completed into the development of models to predict breeding bird population numbers in woodland habitats. These models were analysed to determine whether they could be used successfully with data extracted from the aerial photographs. The projects concluded that 1:2500 scale colour infra-red photographs can provide very useful and very detailed information about the wildlife habitats in an urban area. Such imagery can also provide habitat area data to be used with population predictive models of woodland breeding birds. Using the aerial photographs, further investigations into the relationship between area of habitat and the breeding of individual bird species were inconclusive and need further research.