2 resultados para critical path timeline
em Aston University Research Archive
Resumo:
This thesis describes the procedure and results from four years research undertaken through the IHD (Interdisciplinary Higher Degrees) Scheme at Aston University in Birmingham, sponsored by the SERC (Science and Engineering Research Council) and Monk Dunstone Associates, Chartered Quantity Surveyors. A stochastic networking technique VERT (Venture Evaluation and Review Technique) was used to model the pre-tender costs of public health, heating ventilating, air-conditioning, fire protection, lifts and electrical installations within office developments. The model enabled the quantity surveyor to analyse, manipulate and explore complex scenarios which previously had defied ready mathematical analysis. The process involved the examination of historical material costs, labour factors and design performance data. Components and installation types were defined and formatted. Data was updated and adjusted using mechanical and electrical pre-tender cost indices and location, selection of contractor, contract sum, height and site condition factors. Ranges of cost, time and performance data were represented by probability density functions and defined by constant, uniform, normal and beta distributions. These variables and a network of the interrelationships between services components provided the framework for analysis. The VERT program, in this particular study, relied upon Monte Carlo simulation to model the uncertainties associated with pre-tender estimates of all possible installations. The computer generated output in the form of relative and cumulative frequency distributions of current element and total services costs, critical path analyses and details of statistical parameters. From this data alternative design solutions were compared, the degree of risk associated with estimates was determined, heuristics were tested and redeveloped, and cost significant items were isolated for closer examination. The resultant models successfully combined cost, time and performance factors and provided the quantity surveyor with an appreciation of the cost ranges associated with the various engineering services design options.
Resumo:
Parkinson's disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson's UK and co-organized by Critical Path Institute's (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson's disease.