15 resultados para creatinine clearance
em Aston University Research Archive
Resumo:
Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.
Resumo:
Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.
Resumo:
The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated 'M1' macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated 'M2' macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of 'foam cells' which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The effect of lipoprotein treatment on apoptotic cell-mediated immune modulation of macrophage function is currently under study.
Resumo:
Apoptosis, programmed cell death, is used by multicellular organisms to remove cells that are in excess, damaged or diseased. Activation of the apoptosis programme generates "eat me" signals on the surface of the apoptotic cell that mediate recognition and clearance by the innate immune system. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. However, CD14 has also been shown to mediate binding and removal of apoptotic cells in a process that is anti-inflammatory suggesting CD14 is capable of producing two distinct, ligand-dependent macrophage responses. Whilst the molecular basis for this dichotomy has yet to be defined it is clear that CD14 defines a point of interest on the macrophage surface where we may study ligand-specific responses of macrophages. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of apoptotic cells. Here we used three different differentiation strategies to generate macrophages from the monocytic cell line THP-1. The resultant macrophage models were characterised to assess the expression and function of CD14 within each model system. Whilst each macrophage model shows increased levels of surface CD14 expression, our results demonstrate significant differences in the various models’ abilities to respond to LPS and clear apoptotic cells in a CD14-dependent manner. TLR4 levels correlated positively with LPS responsiveness but not CD14-dependent apoptotic cell clearance or anti-inflammatory responses to apoptotic cells. These observations suggest CD14-dependent apoptotic cell clearance is not dependent on TLR4. Taken together our data support the notion that the CD14 ligand-dependent responses to LPS and apoptotic cells derive from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and apoptotic cell binding and responses is the subject of further study.
Resumo:
Rapid elimination of cells undergoing programmed cell death (apoptosis) is vital to maintain tissue homeostasis. The phagocytic removal of apoptotic cells (AC) is mediated by innate immune molecules, professional phagocytes and amateur phagocytes that recognise "eat me" signals on the surface of the AC. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. CD14 also mediates the binding and removal of AC, a process that is considered to be anti-inflammatory therefore suggesting CD14 is capable of producing two distinct ligand-dependent responses. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of AC. Here we describe three different differentiation strategies used to generate macrophages from the monocytic cell line THP-1. Whilst CD14 expression was increased in each macrophage model we demonstrate significant differences in the various macrophage models' abilities to respond to LPS and clear AC. We show that CD14 expression correlates with CD14-dependent AC clearance and anti-inflammatory responses to AC. However LPS responsiveness correlates, as expected, with TLR4 but not CD14 expression. These observations suggest CD14-dependent AC clearance is not dependent on TLR4. Taken together our data support the notion that CD14 ligand-dependent responses to LPS and AC are derived from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and AC binding and consequent responses is the subject of further study.
Resumo:
Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus-infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti-inflammatory manner. Such "silent" clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age-associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance. © Society for Leukocyte Biology.
Resumo:
The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.
Resumo:
Apoptosis is an important cell death mechanism by which multicellular organisms remove unwanted cells. It culminates in a rapid, controlled removal of cell corpses by neighboring or recruited viable cells. Whilst many of the molecular mechanisms that mediate corpse clearance are components of the innate immune system, clearance of apoptotic cells is an anti-inflammatory process. Control of cell death is dependent on competing pro-apoptotic and anti-apoptotic signals. Evidence now suggests a similar balance of competing signals is central to the effective removal of cells, through so called 'eat me' and 'don't eat me' signals. Competing signals are also important for the controlled recruitment of phagocytes to sites of cell death. Consequently recruitment of phagocytes to and from sites of cell death can underlie the resolution or inappropriate propagation of cell death and inflammation. This article highlights our understanding of mechanisms mediating clearance of dying cells and discusses those mechanisms controlling phagocyte migration and how inappropriate control may promote important pathologies. © the authors, publisher and licensee libertas academica limited.
Resumo:
Removal of dead or diseased cells is crucial feature of apoptosis for managing many biological processes such as tissue remodelling, tissue homeostasis and resolution and control of immune responses throughout life. Tissue transglutaminase (TG2) is a protein crosslinking enzyme that has been implicated in apoptotic cell clearance but also mediates many important cell functions including cell adhesion, migration and monocyte-macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4, ß1 and ß3 integrin. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise extracellular role of TG2 in apoptotic cell clearance remains ill-defined. This thesis addresses macrophage TG2 in cell corpse clearance. TG2 expression (cytosolic and cell surface) in human macrophages was revealed and data demonstrate that loss of TG2 activity through the use of inhibitors of function, including cellimpermeable inhibitors significantly inhibit the ability of macrophages to clear apoptotic cells (AC). This includes reduced macrophage recruitment to and binding of apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus it defines for the first time a role for TG2 activity at the cell surface of human macrophages in multiple stages of AC clearance and proposed that TG2, in association with heparan sulphates, may exert its effect on AC clearance via crosslinking of CD44.
Resumo:
Individuals within the aged population show an increased susceptibility to infection, implying a decline in immune function, a phenomenon known as immunosenescence. Paradoxically, an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with ageing, therefore some aspects of the immune system appear to be inappropriately active in the elderly. The above evidence suggests inappropriate control of the immune system as we age. Macrophages, and their precursors monocytes, play a key role in control of the immune system. They play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Macrophages also have a reparative role, as professional phagocytes of dead and dying cells. Clearance of apoptotic cells by macrophages has also been shown to directly influence immune responses in an anti-inflammatory manner. Inappropriate control of macrophage function with regards to dead cell clearance may contribute to pathology as we age. The aims of this study were to assess the impact of lipid treatment, as a model of the aged environment, on the ability of macrophages to interact with, and respond to, apoptotic cells. Using a series of in vitro cell models, responses of macrophages (normal and lipid-loaded) to apoptotic macrophages (normal and lipid-loaded) were investigated. Monocyte recruitment to apoptotic cells, a key process in resolving inflammation, was assessed in addition to cytokine responses. Data here shows, for the first time, that apoptotic macrophages (normal and lipid-loaded) induce inflammation in human monocyte-derived macrophages, a response that could drive inflammation in age-associated pathology e.g. atherosclerosis. Monoclonal antibody inhibition studies suggest the classical chemokine CX3CL1 may be involved in monocyte recruitment to apoptotic macrophages, but not apoptotic foam cells, therefore differential clearance strategies may be employed following lipid-loading. CD14, an important apoptotic cell tethering receptor, was not found to have a prominent role in this process, whilst the role for ICAM-3 remains unclear. Additionally, a small pilot study using macrophages from young (<25) and mid-life (>40) donors was undertaken. Preliminary data was gathered to assess the ability of primary human monocyte-derived macrophages, from young and mid-life donors, to interact with, and respond to, apoptotic cells. MØ from mid-life individuals showed no significant differences in their ability to respond to immune modulation by apoptotic cells compared to MØ from young donors. Larger cohorts would be required to investigate whether immune modulation of MØ by apoptotic cells contribute to inflammatory pathology throughout ageing.
Resumo:
The phagocytic clearance of apoptotic cells is a highly efficient and nonphlogistic process in vivo. Research in this area has been limited, at least in part, by technical difficulties associated with the techniques used in the detailed study of apoptotic cell clearance mechanisms. This chapter provides details of methods that may be used to study apoptotic cell clearance in vitro. Such methods have been used successfully to identify phagocyte-associated or apoptotic cell-associated molecular players in the recognition process.
Resumo:
Apoptotic-cell clearance is dependent on several macrophage surface molecules, including CD14. Phosphatidylserine (PS) becomes externalised during apoptosis and participates in the clearance process through its ability to bind to a novel receptor, PS-R. CD14 has the proven ability to bind phospholipids and may function as an alternative receptor for the externallsed PS of apoptotic cells. Here we demonstrate that CD14 does not function preferentially as a PS receptor in apoptotic-cell clearance. Compared with phosphatidylcholine and phosphatidylethanolamine, PS was the least active phospholipid binding to human monocyte-derived macrophages and showed no specificity for soluble or membrane-anchored CD14. Significantly, PS-containing liposomes a e to inhibit CD14-dependent uptake of apoptotic cells by macrophages. PS exposure was, however, found to be insufficient for either CD14-dependent or CD14-independent apoptotic-cell uptake by phagocytes. The additional features that enable apoptotic-cell clearance are derived from mechanisms that can be divorced temporally from those responsible for the morphological features of apoptosis.
Resumo:
Little is known of the functions of caspases in mediating the surface changes required for phagocytosis of dying cells. Here we investigate the role played by the effector caspase, caspase-3 in this process using the caspase-3-defective MCF-7 breast carcinoma line and derived caspase-3-expressing transfectants. Our results indicate that, while certain typical features of apoptosis induced by etoposide – namely classical morphological changes and the ability to degrade DNA into oligonucleosomal fragments – are caspase-3-dependent, loss of cell adhesion to plastic and the capacity to interact with, and to be phagocytosed by, human monocyte-derived macrophages – both by CD14-dependent and CD14-independent mechanisms – do not require caspase-3. Furthermore, both etoposide-induced caspase-3-positive and -negative MCF-7 cells suppressed proinflammatory cytokine release by macrophages. These results demonstrate directly that cell surface changes that are sufficient for anti-inflammatory clearance by human macrophages can be regulated independently of stereotypical features of the apoptosis programme that require caspase-3.
Resumo:
This is the first comprehensive book about the relationship between apoptosis and autoimmune diseases. It offers a unique up–to–date overview on research results on the defective execution of apoptosis and the incomplete clearance of apoptotic cells. The molecular and cellular mechanisms involved are described in detail. As a possible consequence of apoptotic dysfunction, the development of severe autoimmune diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus) is discussed. An outlook on future research topics includes the evaluation of novel therapeutic strategies.
Resumo:
Apoptotic cell clearance by phagocytes is a vital part of programmed cell death that prevents dying cells from undergoing necrosis which may lead to inflammatory and autoimmune disorders. Apoptotic cells (AC) are removed by phagocytes, in a process that involves 'find me' and 'eat me' signals that facilitate the synapsing and engulfment of cell corpses. Extracellular vesicles (EV) are shed during apoptosis and promote phagocyte recruitment. Binding of AC is achieved by multiple ligand-receptor interactions. One interesting AC associated ligand is ICAM-3, a highly glycosylated adhesion molecule of the IgSF family, expressed on human leukocytes. On viable cells ICAM-3 participates in initiating immune responses, whereas on AC we show it attracts phagocytes through EV and aids in the binding of AC to the phagocytes. This project aims to characterize the role of ICAM-3 and EV in the clearance of AC and to identify the mechanisms that underlie their function in apoptotic cell clearance. Human B cells induced to apoptosis by UV irradiation were observed during their progression from viable to apoptotic via flow cytometry. The involvement of ICAM-3 in mediating interaction between AC and MØ was assessed. The ability of ICAM3 on EV to mediate chemoattraction was observed using chemotaxis assays. Additionally the anti-inflammatory effect was assessed using LPS-induced TNF-α production that suggested it may have anti-inflammatory effects. Future work in this project will assess the role of ICAM3 on EV from different phases of apoptosis to exert functional effects both in vitro and in vivo.