16 resultados para correlation coefficient analysis
em Aston University Research Archive
Resumo:
In previous statnotes, the application of correlation and regression methods to the analysis of two variables (X,Y) was described. The most important statistic used to measure the degree of correlation between two variables is Pearson’s ‘product moment correlation coefficient’ (‘r’). The correlation between two variables may be due to their common relation to other variables. Hence, investigators using correlation studies need to be alert to the possibilities of spurious correlation and the methods of ‘partial correlation’ are one method of taking this into account. This statnote applies the methods of partial correlation to three scenarios. First, to a fairly obvious example of a spurious correlation resulting from the ‘size effect’ involving the relationship between the number of general practitioners (GP) and the number of deaths of patients in a town. Second, to the relationship between the abundance of the nitrogen-fixing bacterium Azotobacter in soil and three soil variables, and finally, to a more complex scenario, first introduced in Statnote 24involving the relationship between the growth of lichens in the field and climate.
Resumo:
The intra-class correlation coefficient (ICC or ri) is a method of measuring correlation when the data are paired and therefore, should be used when experimental units are organised into groups. A useful analogy is with the unpaired or paired ‘t’ test to compare the differences between the means of two groups. In studies of reproducibility, there may actually be little difference between the ICC and Pearson’s ‘r’ for ‘true’ repeated measurements. If, however, there is a systematic change in the measurements made on the first compared with the second occasion, then the ICC will be significantly less than ‘r’, and less confidence would be placed in the reproducibility of the results.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
If in a correlation test, one or both variables are small whole numbers, scores based on a limited scale, or percentages, a non-parametric correlation coefficient should be considered as an alternative to Pearson’s ‘r’. Kendall’s t and Spearman’s rs are similar tests but the former should be considered if the analysis is to be extended to include partial correlations. If the data contain many tied values, then gamma should be considered as a suitable test.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
The relationship between sleep apnoea–hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea–hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals.
Resumo:
Correlation and regression are two of the statistical procedures most widely used by optometrists. However, these tests are often misused or interpreted incorrectly, leading to erroneous conclusions from clinical experiments. This review examines the major statistical tests concerned with correlation and regression that are most likely to arise in clinical investigations in optometry. First, the use, interpretation and limitations of Pearson's product moment correlation coefficient are described. Second, the least squares method of fitting a linear regression to data and for testing how well a regression line fits the data are described. Third, the problems of using linear regression methods in observational studies, if there are errors associated in measuring the independent variable and for predicting a new value of Y for a given X, are discussed. Finally, methods for testing whether a non-linear relationship provides a better fit to the data and for comparing two or more regression lines are considered.
Resumo:
Purpose To develop a standardized questionnaire of near visual function and satisfaction to complement visual function evaluations of presbyopic corrections. Setting Eye Clinic, School of Life and Health Sciences, Aston University, Midland Eye Institute and Solihull Hospital, Birmingham, United Kingdom. Design Questionnaire development. Methods A preliminary 26-item questionnaire of previously used near visual function items was completed by patients with monofocal intraocular lenses (IOLs), multifocal IOLs, accommodating IOLs, multifocal contact lenses, or varifocal spectacles. Rasch analysis was used for item reduction, after which internal and test–retest reliabilities were determined. Construct validity was determined by correlating the resulting Near Activity Visual Questionnaire (NAVQ) scores with near visual acuity and critical print size (CPS), which was measured using the Minnesota Low Vision Reading Test chart. Discrimination ability was assessed through receiver-operating characteristic (ROC) curve analysis. Results One hundred fifty patients completed the questionnaire. Item reduction resulted in a 10-item NAVQ with excellent separation (2.92), internal consistency (Cronbach a = 0.95), and test–retest reliability (intraclass correlation coefficient = 0.72). Correlations of questionnaire scores with near visual acuity (r = 0.32) and CPS (r = 0.27) provided evidence of validity, and discrimination ability was excellent (area under ROC curve = 0.91). Conclusion Results show the NAVQ is a reliable, valid instrument that can be incorporated into the evaluation of presbyopic corrections.
Resumo:
An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.
Resumo:
Purpose: To develop a questionnaire that subjectively assesses near visual function in patients with 'accommodating' intraocular lenses (IOLs). Methods: A literature search of existing vision-related quality-of-life instruments identified all questions relating to near visual tasks. Questions were combined if repeated in multiple instruments. Further relevant questions were added and item interpretation confirmed through multidisciplinary consultation and focus groups. A preliminary 19-item questionnaire was presented to 22 subjects at their 4-week visit post first eye phacoemulsification with 'accommodative' IOL implantation, and again 6 and 12 weeks post-operatively. Rasch Analysis, Frequency of Endorsement, and tests of normality (skew and kurtosis) were used to reduce the instrument. Cronbach's alpha and test-retest reliability (intraclass correlation coefficient, ICC) were determined for the final questionnaire. Construct validity was obtained by Pearson's product moment correlation (PPMC) of questionnaire scores to reading acuity (RA) and to Critical Print Size (CPS) reading speed. Criterion validity was obtained by receiver operating characteristic (ROC) curve analysis and dimensionality of the questionnaire was assessed by factor analysis. Results: Rasch Analysis eliminated nine items due to poor fit statistics. The final items have good separation (2.55), internal consistency (Cronbach's α = 0.97) and test-retest reliability (ICC = 0.66). PPMC of questionnaire scores with RA was 0.33, and with CPS reading speed was 0.08. Area under the ROC curve was 0.88 and Factor Analysis revealed one principal factor. Conclusion: The pilot data indicates the questionnaire to be internally consistent, reliable and a valid instrument that could be useful for assessing near visual function in patients with 'accommodating' IOLS. The questionnaire will now be expanded to include other types of presbyopic correction. © 2007 British Contact Lens Association.
Resumo:
Pearson's correlation coefficient (‘r’) is one of the most widely used of all statistics. Nevertheless, care needs to be used in interpreting the results because with large numbers of observations, quite small values of ‘r’ become significant and the X variable may only account for a small proportion of the variance in Y. Hence, ‘r squared’ should always be calculated and included in a discussion of the significance of ‘r’. The use of ‘r’ also assumes that the data follow a bivariate normal distribution (see Statnote 17) and this assumption should be examined prior to the study. If the data do not conform to such a distribution, the use of a non-parametric correlation coefficient should be considered. A significant correlation should not be interpreted as indicating ‘causation’ especially in observational studies, in which the two variables may be correlated because of their mutual correlations with other confounding variables.
Resumo:
In the center of today's continued and rapid technological change and ever competitive environment of the next millennium, manufacturers must realize that unless they are ready to consider and evaluate new technologies brought onto them, they may fail to adequately respond to the challenges that lie ahead of them. This research was designed to determine the consistency of the perceptions of technical and non-technical administrators, in manufacturing environment, towards technological change and group technology as an advanced manufacturing system. This research has included a review of literature with references to technological change, justification and implementation processes, and various manufacturing systems including group technology and its benefits. This research has used the research method of empirical analysis (quantitative) and case studies (qualitative) to research perceptions of technical and non-technical administrators towards technological change and group technology. Sixty-four (64) technical and fifty-one (51) nontechnical administrators from fifty (50) manufacturing organizations in the United States of America responded to the mail survey questionnaire used in this research. Responses were analyzed using the Repeated Measures ANOVA procedure to compare mean responses of each group. Two correlation analyses, Cronback Coefficient Alpha and Pearson Correlation Coefficient, were also performed to determine the reliability of the questionnaire as well as the degree of correlation of perceptions between these two groups. This research, through the empirical analysis, has found that perceptions of the technical and non-technical administrators towards group technology were not consistent. In other words, they did not perceive the benefits of group technology in the same manner to the overall organizational performance. This finding was significant since it provided the first clear and comprehensive view of the technical and non-technical administrators' perception towards group technology and technological change, in Food Equipment Manufacturer Industry, in United States of America. In addition, a number of cases were analyzed and the results have supported those of the quantitative analysis. Therefore, this research not only has provided basic data, which was unavailable prior to this investigation, but it also provided a basis for future studies.
Resumo:
PURPOSE: To validate a new miniaturised, open-field wavefront device which has been developed with the capacity to be attached to an ophthalmic surgical microscope or slit-lamp. SETTING: Solihull Hospital and Aston University, Birmingham, UK DESIGN: Comparative non-interventional study. METHODS: The dynamic range of the Aston Aberrometer was assessed using a calibrated model eye. The validity of the Aston Aberrometer was compared to a conventional desk mounted Shack-Hartmann aberrometer (Topcon KR1W) by measuring the refractive error and higher order aberrations of 75 dilated eyes with both instruments in random order. The Aston Aberrometer measurements were repeated five times to assess intra-session repeatability. Data was converted to vector form for analysis. RESULTS: The Aston Aberrometer had a large dynamic range of at least +21.0 D to -25.0 D. It gave similar measurements to a conventional aberrometer for mean spherical equivalent (mean difference ± 95% confidence interval: 0.02 ± 0.49D; correlation: r=0.995, p<0.001), astigmatic components (J0: 0.02 ± 0.15D; r=0.977, p<0.001; J45: 0.03 ± 0.28; r=0.666, p<0.001) and higher order aberrations RMS (0.02 ± 0.20D; r=0.620, p<0.001). Intraclass correlation coefficient assessments of intra-sessional repeatability for the Aston Aberrometer were excellent (spherical equivalent =1.000, p<0.001; astigmatic components J0 =0.998, p<0.001, J45=0.980, p<0.01; higher order aberrations RMS =0.961, p<0.001). CONCLUSIONS: The Aston Aberrometer gives valid and repeatable measures of refractive error and higher order aberrations over a large range. As it is able to measure continuously, it can provide direct feedback to surgeons during intraocular lens implantations and corneal surgery as to the optical status of the visual system.
Resumo:
In many of the Statnotes described in this series, the statistical tests assume the data are a random sample from a normal distribution These Statnotes include most of the familiar statistical tests such as the ‘t’ test, analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’). Nevertheless, many variables exhibit a more or less ‘skewed’ distribution. A skewed distribution is asymmetrical and the mean is displaced either to the left (positive skew) or to the right (negative skew). If the mean of the distribution is low, the degree of variation large, and when values can only be positive, a positively skewed distribution is usually the result. Many distributions have potentially a low mean and high variance including that of the abundance of bacterial species on plants, the latent period of an infectious disease, and the sensitivity of certain fungi to fungicides. These positively skewed distributions are often fitted successfully by a variant of the normal distribution called the log-normal distribution. This statnote describes fitting the log-normal distribution with reference to two scenarios: (1) the frequency distribution of bacterial numbers isolated from cloths in a domestic environment and (2), the sizes of lichenised ‘areolae’ growing on the hypothalus of Rhizocarpon geographicum (L.) DC.
Resumo:
In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.