10 resultados para cord blood, IL-27
em Aston University Research Archive
Resumo:
Objective - The purpose of this study was to assess cardiac function and cell damage in intrauterine growth-restricted (IUGR) fetuses across clinical Doppler stages of deterioration. Study Design - One hundred twenty appropriate-for-gestational-age and 81 IUGR fetuses were classified in stages 1/2/3 according umbilical artery present/absent/reversed end-diastolic blood flow, respectively. Cardiac function was assessed by modified-myocardial performance index, early-to-late diastolic filling ratios, cardiac output, and cord blood B-type natriuretic peptide; myocardial cell damage was assessed by heart fatty acid–binding protein, troponin-I, and high-sensitivity C-reactive protein. Results - Modified-myocardial performance index, blood B-type natriuretic peptide, and early-to-late diastolic filling ratios were increased in a stage-dependent manner in IUGR fetuses, compared with appropriate-for-gestational-age fetuses. Heart fatty acid–binding protein levels were higher in IUGR fetuses at stage 3, compared with control fetuses. Cardiac output, troponin-I, and high-sensitivity C-reactive protein did not increase in IUGR fetuses at any stage. Conclusion - IUGR fetuses showed signs of cardiac dysfunction from early stages. Cardiac dysfunction deteriorates further with the progression of fetal compromise, together with the appearance of biochemical signs of cell damage.
Resumo:
Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9-T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×10(6) PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-a and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.
Resumo:
Paediatric intensive care is an expanding specialty that has been shown to improve the quality of care provided to critically ill children. An important aspect of the management of critically ill children includes the provision of effective sedation to reduce stress and anxiety during their stay in intensive care. However, to achieve effective and safe sedation in these children, is recognised as a challenge that is not without risk. Often children receive too much or too little sedation resulting in over sedation or under sedation respectively. These problems have arisen owing to a lack of information regarding altered pharmacokinetics and pharmacodynamics of medicines administered to critically ill children. In addition there are few validated sedation scoring systems in practice with which to monitor level of sedation and titrate medication appropriately. This study consisted of two stages. Stage 1 investigated the reproducibility and practicality of two observational sedation assessment scales for use in critically ill children. The two scales were different in design, the first being simple in design requiring a single assessment of the patient. The second was more complex in design requiring assessment of five patient parameters to obtain an overall sedation score. Both scales were found to achieve good reproducibility (kappa values 0.50 and 0.62 respectively). Practicality of each sedation scale was undertaken by obtaining nursing staff opinion about both scales using questionnaire and interview technique. It was established that nursing staff preferred the second, more complex sedation scale mainly because it was perceived to give a more accurate assessment of level of sedation and anxiety rather than merely level of sedation. Stage 2 investigated the pharmacokinetics and pharmacodynamics of midazolam in critically ill children. 52 children, aged between 0 and 18 years were recruited to the study and 303 blood samples taken to analyse midazolam and its metabolites, I-hydroxyrnidazolam (I-OR) and 4-hydroxymidazolam (4-0H). Analysis of plasma was undertaken using high performance liquid chromatography. A significant correlation was found between midazolam plasma concentration and sedative effect (r=0.598, p=O.OI). It was found that a midazolam plasma concentration of 223ng/ml (±31.9) achieved a satisfactory level of sedation. Only a poor correlation was found between dose of midazolam and plasma concentration of midazolam. Similarly only a poor correlation was found between sedative effect and dose of midazolam. Clearance of midazolam was found to be 6.3mllkglmin (±0.36), which is lower than that reported in healthy children (9.Il-13.3mllkg/min). Age related differences in midazolam clearance were observed in the study. Neonates produced the lowest clearance values (l.63mllkg/min), compared to children aged 1 to 12 months (8.52mllkg/min) who achieved the highest clearance values. Clearance was found to decrease after the age of 12 months to values of 5.34mllkglmin in children aged 7 years and above. Patients with renal (n=5) and liver impairment (n~4) were found to have reduced midazolam clearance (1.37 and 0.74ml/kg/min respectively). Plasma concentrations of I-OH and 4-0H ranged from 0-5 1 89nglml and 0-27 Inglml respectively. All children were found to be capable of producing both metabolites irrespective of age, although no trend was established between age and extent of production of either metabolite. Disease state was found to affect production of l-OH. Patients with renal impairment (n=5) produced the lowest I-OH midazolam plasma ratio (0.059) compared to patients with head injury (0.858). Patients with severe liver impairment were found to be capable of manufacturing both metabolites despite having a severely damaged liver.
Resumo:
Les études typologiques (Hagège 1993, Bybee et al.1994, Dahl 2000, Bourdin 2008 notamment) ont montré de façon consistante que les indications spatiales (notamment les verbes de mouvement) tendaient à se grammaticaliser en expressions temporelles. La forme itive (en français aller) dans les langues romanes a fait l’objet de ce processus linguistique , et avec succès, puisque, en tant qu’auxiliaire d’un verbe à l’infinitif ou au participe présent (et moins fréquemment au participe passé), elle est à même d’offrir, au cours de son histoire, pas moins de onze emplois grammaticalisés (Bres et Labeau à paraître). Nous nous intéresserons dans cet article, qui ne portera que sur le français, à l’emploi que nous nommerons, avec Larreya (2005) et Lansari (2009), narratif: il apparaît en textualité narrative, dont les propositions du premier plan sont régies par la relation de progression (Labov 1972/1978). Cet emploi que le français a connu jusqu’au début du XVIIème (1) tend, sur des bases peut-être différentes, à se répandre aujourd’hui (2): (1) Sur ces propos, feirent leur accord, et, en regardant le lieu le plus propre pour faire ceste belle oeuvre, elle vat dire qu'elle n'en sçavoit poinct de meilleure ne plus loing de tout soupson, que une petite maison qui estoit dedans le parc, où il y avoit chambre et lict tout à propos. Le gentil homme, qui n'eust trouvé nul lieu mauvais, se contenta de cestuy-là. (Navarre M. de, L'Heptaméron, 1550) (2) (…) Teddy Pendergrass est remarqué par Harold Melvin, leader du quintette vocal The Blue Notes. Il rejoint alors la formation, qui va enchaîner une succession de tubes. En 1976, Teddy Pendergrass décide de mener une carrière solo et quitte les Blue Notes . Il va régulièrement occuper les premières places des meilleures ventes de disques aux USA. (Le Monde, Obituaire de T. Pendergrass, 27 .1. 2010)
Resumo:
Bone marrow stromal cells (BMSCs) have the potential to improve functional recovery in patients with spinal cord injury (SCI); however, they are limited by low survival rates after transplantation in the injured tissue. Our objective was to clarify the effects of a temporal blockade of interleukin 6 (IL-6)/IL-6 receptor (IL-6R) engagement using an anti-mouse IL-6R monoclonal antibody (MR16-1) on the survival rate of BMSCs after their transplantation in a mouse model of contusion SCI. MR16-1 cotreatment improved the survival rate of transplanted BMSCs, allowing some BMSCs to differentiate into neurons and astrocytes, and improved locomotor function recovery compared with BMSC transplantation or MR16-1 treatment alone. The death of transplanted BMSCs could be mainly related to apoptosis rather than necrosis. Transplantation of BMSC with cotreatment of MR16-1 was associated with a decrease of some proinflammatory cytokines, an increase of neurotrophic factors, decreased apoptosis rates of transplanted BMSCs, and enhanced expression of survival factors Akt and extracellular signal-regulated protein kinases 1/2. We conclude that MR16-1 treatment combined with BMSC transplants helped rescue neuronal cells and axons after contusion SCI better than BMSCs alone by modulating the inflammatory/immune responses and decreasing apoptosis. © 2013 by the American Association of Neuropathologists, Inc.
Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure
Resumo:
A key factor in the use of assisted reproductive technologies (ART) for diverse species is the safety of procedures for long-term health. By using a mouse model, we have investigated the effect of in vitro culture and embryo transfer (ET) of superovulated embryos on postnatal growth and physiological activity compared with that of embryos developing in vivo. Embryo culture from two-cell to blastocyst stages in T6 medium either with or without a protein source reduced blastocyst trophectoderm and inner cell mass cell number compared with that of embryos developing in vivo. Embryo culture and ET had minimal effects on postnatal growth when compared with in vivo development with an equivalent litter size. However, embryo culture, and to a lesser extent ET, led to an enhanced systolic blood pressure at 21 weeks compared with in vivo development independent of litter size, maternal origin, or body weight. Moreover, activity of enzymatic regulators of cardiovascular and metabolic physiology, namely, serum angiotensin-converting enzyme and the gluconeogenesis controller, hepatic phosphoeno/pyruvate carboxykinase, were significantly elevated in response to embryo culture and/or ET in female offspring at 27 weeks, independent of maternal factors and postnatal growth. These animal data indicate that postnatal physiological criteria important in cardiovascular and metabolic health may be more sensitive to routine ART procedures than growth. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. MR16-1 antibodies versus isotype control antibodies or saline alone was administered immediately after thoracic SCI in mice. MR16-1-treated group samples showed increased neuronal regeneration and locomotor recovery compared with controls. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. MR16-1 treatment promoted arginase-1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site and enhanced positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Introduction - The present study aimed to describe characteristics of patients with type 2 diabetes (T2D) in UK primary care initiated on dapagliflozin, post-dapagliflozin changes in glycated hemoglobin (HbA1c), body weight and blood pressure, and reasons for adding dapagliflozin to insulin. Methods - Retrospective study of patients with T2D in the Clinical Practice Research Datalink with first prescription for dapagliflozin. Patients were included in the study if they: (1) had a first prescription for dapagliflozin between November 2012 and September 2014; (2) had a Read code for T2D; (3) were registered with a practice for at least 6 months before starting dapagliflozin; and (4) remained registered for at least 3 months after initiation. A questionnaire ascertained reason(s) for adding dapagliflozin to insulin. Results - Dapagliflozin was most often used as triple therapy (27.7%), dual therapy with metformin (25.1%) or added to insulin (19.2%). Median therapy duration was 329 days [95% confidence interval (CI) 302–361]. Poor glycemic control was the reason for dapagliflozin initiation for 93.1% of insulin-treated patients. Avoiding increases in weight/body mass index and insulin resistance were the commonest reasons for selecting dapagliflozin versus intensifying insulin. HbA1c declined by mean of 9.7 mmol/mol (95% CI 8.5–10.9) (0.89%) 14–90 days after starting dapagliflozin, 10.2 mmol/mol (95% CI 8.9–11.5) (0.93%) after 91–180 days and 12.6 mmol/mol (95% CI 11.0–14.3) (1.16%) beyond 180 days. Weight declined by mean of 2.6 kg (95% CI 2.3–2.9) after 14–90 days, 4.3 kg (95% CI 3.8–4.7) after 91–180 days and 4.6 kg (95% CI 4.0–5.2) beyond 180 days. In patients with measurements between 14 and 90 days after starting dapagliflozin, systolic and diastolic blood pressure decreased by means of 4.5 (95% CI −5.8 to −3.2) and 2.0 (95% CI −2.9 to −1.2) mmHg, respectively from baseline. Similar reductions in systolic and diastolic blood pressure were observed after 91–180 days and when follow-up extended beyond 180 days. Results were consistent across subgroups. Conclusion - HbA1c, body weight and blood pressure were reduced after initiation of dapagliflozin in patients with T2D in UK primary care and the changes were consistent with randomized clinical trials.