5 resultados para copper soil contamination
em Aston University Research Archive
Resumo:
The research work reported in this thesis is concerned with the development and application of an urban scale sampling methodology for measuring and assessing background levels of heavy metal soil contamination in large and varied urban areas. The policy context of the work is broadly the environmental health problems posed by contaminated land and their implications for urban development planning. Within this wider policy context, the emphasis in the research has been placed on issues, related to the determination and application of 'guidelines' for assessing the significance of contaminated land for environmental planning. In concentrating on background levels of land contamination, the research responds to the need for additional techniques which address both the problems of measuring soil contamination at the urban scale and which are also capable of providing detailed information for use in the assessment of contaminated sites. Therefore, a key component of the work has been the development of a land-use based sampling framework for generating spatially comprehensive data on heavy metals in soil. The utility of the information output of the sampling method is demonstrated in two alternative ways. Firstly, it has been used to map the existing pattern of typical levels of heavy metals in urban soils. Secondly, it can be used to generate both generalised data in the form of 'reference levels' from which the overall significance of .background contamination may be assessed and detailed data, termed 'normal limit levels' for use in the assessment of site specific investigation data. The fieldwork was conducted in the West Midlands Metropolitan County and surface soil has been sampled and analysed for a measure of plant-available' and 'total' lead cadmium, copper and zinc. The research contrasts with much of the previous work on contaminated land which has generally concentrated on either the detailed investigation of individual sites suspected of being contaminated or the appraisal of land contamination resulting from specific point sources.
Resumo:
The environment may act as a reservoir for pathogens that cause healthcare-associated infections (HCAIs). Approaches to reducing environmental microbial contamination in addition to cleaning are thus worthy of consideration. Copper is well recognised as having antimicrobial activity but this property has not been applied to the clinical setting. We explored its use in a novel cross-over study on an acute medical ward. A toilet seat, set of tap handles and a ward entrance door push plate each containing copper were sampled for the presence of micro-organisms and compared to equivalent standard, non-copper-containing items on the same ward. Items were sampled once weekly for 10 weeks at 07:00 and 17:00. After five weeks, the copper-containing and non-copper-containing items were interchanged. The total aerobic microbial counts per cm2 including the presence of ‘indicator micro-organisms’ were determined. Median numbers of microorganisms harboured by the copper-containing items were between 90% and 100% lower than their control equivalents at both 07:00 and 17:00. This reached statistical significance for each item with one exception. Based on the median total aerobic cfu counts from the study period, five out of ten control sample points and zero out of ten copper points failed proposed benchmark values of a total aerobic count of <5 cfu/cm2. All indicator micro-organisms were only isolated from control items with the exception of one item during one week. The use of copper-containing materials for surfaces in the hospital environment may therefore be a valuable adjunct for the prevention of HCAIs and requires further evaluation.
Resumo:
A clinical study was undertaken to compare the surface microbial contamination associated with pens constructed of either a copper alloy or stainless steel used by nurses on intensive care units. A significantly lower level of microbial contamination was found on the copper alloy pens. Copyright © 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES: Persistent contamination of surfaces by spores of Clostridium difficile is a major factor influencing the spread of C. difficile-associated diarrhoea (CDAD) in the clinical setting. In recent years, the antimicrobial efficacy of metal surfaces has been investigated against microorganisms including methicillin-resistant Staphylococcus aureus. This study compared the survival of C. difficile on stainless steel, a metal contact surface widely used in hospitals, and copper surfaces. METHODS: Antimicrobial efficacy was assessed using a carrier test method against dormant spores, germinating spores and vegetative cells of C. difficile (NCTC 11204 and ribotype 027) over a 3 h period in the presence and absence of organic matter. RESULTS: Copper metal eliminated all vegetative cells of C. difficile within 30 min, compared with stainless steel which demonstrated no antimicrobial activity (P < 0.05). Copper significantly reduced the viability of spores of C. difficile exposed to the germinant (sodium taurocholate) in aerobic conditions within 60 min (P < 0.05) while achieving a >or=2.5 log reduction (99.8% reduction) at 3 h. Organic material did not reduce the antimicrobial efficacy of the copper surface (P > 0.05).