4 resultados para consumo energetico Smart Environment sensori
em Aston University Research Archive
Resumo:
Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.
Resumo:
Smart grid technologies have given rise to a liberalised and decentralised electricity market, enabling energy providers and retailers to have a better understanding of the demand side and its response to pricing signals. This paper puts forward a reinforcement-learning-powered tool aiding an electricity retailer to define the tariff prices it offers, in a bid to optimise its retail strategy. In a competitive market, an energy retailer aims to simultaneously increase the number of contracted customers and its profit margin. We have abstracted the problem of deciding on a tariff price as faced by a retailer, as a semi-Markov decision problem (SMDP). A hierarchical reinforcement learning approach, MaxQ value function decomposition, is applied to solve the SMDP through interactions with the market. To evaluate our trading strategy, we developed a retailer agent (termed AstonTAC) that uses the proposed SMDP framework to act in an open multi-agent simulation environment, the Power Trading Agent Competition (Power TAC). An evaluation and analysis of the 2013 Power TAC finals show that AstonTAC successfully selects sell prices that attract as many customers as necessary to maximise the profit margin. Moreover, during the competition, AstonTAC was the only retailer agent performing well across all retail market settings.
Resumo:
Mobile communication and networking infrastructures play an important role in the development of smart cities, to support real-time information exchange and management required in modern urbanization. Mobile WiFi devices that help offloading data traffic from the macro-cell base station and serve the end users within a closer range can significantly improve the connectivity of wireless communications between essential components including infrastructural and human devices in a city. However, this offloading function through interworking between LTE and WiFi systems will change the pattern of resource distributions operated by the base station. In this paper, a resource allocation scheme is proposed to ensure stable service coverage and end-user quality of experience (QoE) when offloading takes place in a macro-cell environment. In this scheme, a rate redistribution algorithm is derived to form a parametric scheduler to meet the required levels of efficiency and fairness, guided by a no-reference quality assessment metric. We show that the performance of resource allocation can be regulated by this scheduler without affecting the service coverage offered by the WLAN access point. The performances of different interworking scenarios and macro-cell scheduling policies are also compared.
Resumo:
In this paper a surgical robotic device for cochlear implantation surgery is described that is able to discriminate tissue interfaces and other controlling parameters ahead of a drill tip. The advantage in surgery is that tissues at interfaces can be preserved. The smart tool is able to control interaction with respect to the flexing tissue to avoid penetration control the extent of protrusion with respect to the real-time position of the tissue. To interpret drilling conditions, and conditions leading up to breakthrough at a tissue interface, the sensing scheme used enables discrimination between the variety of conditions posed in the drilling environment. The result is a robust fully autonomous system able to respond to tissue type, behaviour and deflection in real-time. The paper describes the robotic tool that has been designed to be used in the surgical environment where it has been used in the operating room.