7 resultados para constraint satisfaction problem

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of finished products from depots to customers is a practical and challenging problem in logistics management. Better routing and scheduling decisions can result in higher level of customer satisfaction because more customers can be served in a shorter time. The distribution problem is generally formulated as the vehicle routing problem (VRP). Nevertheless, there is a rigid assumption that there is only one depot. In cases, for instance, where a logistics company has more than one depot, the VRP is not suitable. To resolve this limitation, this paper focuses on the VRP with multiple depots, or multi-depot VRP (MDVRP). The MDVRP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To deal with the problem efficiently, two hybrid genetic algorithms (HGAs) are developed in this paper. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method and the nearest neighbor heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different problem sizes. It is proved that the performance of HGA2 is superior to that of HGA1 in terms of the total delivery time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When applying multivariate analysis techniques in information systems and social science disciplines, such as management information systems (MIS) and marketing, the assumption that the empirical data originate from a single homogeneous population is often unrealistic. When applying a causal modeling approach, such as partial least squares (PLS) path modeling, segmentation is a key issue in coping with the problem of heterogeneity in estimated cause-and-effect relationships. This chapter presents a new PLS path modeling approach which classifies units on the basis of the heterogeneity of the estimates in the inner model. If unobserved heterogeneity significantly affects the estimated path model relationships on the aggregate data level, the methodology will allow homogenous groups of observations to be created that exhibit distinctive path model estimates. The approach will, thus, provide differentiated analytical outcomes that permit more precise interpretations of each segment formed. An application on a large data set in an example of the American customer satisfaction index (ACSI) substantiates the methodology’s effectiveness in evaluating PLS path modeling results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Personal selling and sales management play a critical role in the short and long term success of the firm, and have thus received substantial academic interest since the 1970s. Sales research has examined the role of the sales manager in some depth, defining a number of key technical and interpersonal roles which sales managers have in influencing sales force effectiveness. However, one aspect of sales management which appears to remain unexplored is that of their resolution of salesperson-related problems. This study represents the first attempt to address this gap by reporting on the conceptual and empirical development of an instrument designed to measure sales managers' problem resolution styles. A comprehensive literature review and qualitative research study identified three key constructs relating to sales managers' problem resolution styles. The three constructs identified were termed; sales manager willingness to respond, sales manager caring, and sales manager aggressiveness. Building on this, existing literature was used to develop a conceptual model of salesperson-specific consequences of the three problem resolution style constructs. The quantitative phase of the study consisted of a mail survey of UK salespeople, achieving a total sample of 140 fully usable responses. Rigorous statistical assessment of the sales manager problem resolution style measures was undertaken, and construct validity examined. Following this, the conceptual model was tested using latent variable path analysis. The results for the model were encouraging overall, and also with regard to the individual hypotheses. Sales manager problem resolution styles were found individually to have significant impacts on the salesperson-specific variables of role ambiguity, emotional exhaustion, job satisfaction, organisational commitment and organisational citizenship behaviours. The findings, theoretical and managerial implications, limitations and directions for future research are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is presented in two parts. The first part is an attempt to set out a framework of factors influencing the problem solving stage of the architectural design process. The discussion covers the nature of architectural problems and some of the main ways in which they differ from other types of design problems. The structure of constraints that both the problem and the architect impose upon solutions are seen as of great importance in defining the type of design problem solving situation. The problem solver, or architect, is then studied. The literature of the psychology of thinking is surveyed for relevant work . All of the traditional schools of psychology are found wanting in terms of providing a comprehensive theory of thinking. Various types of thinking are examined, particularly structural and productive thought, for their relevance to design problem solving. Finally some reported common traits of architects are briefly reviewed. The second section is a report of u~o main experiments which model some aspects of architectural design problem solving. The first experiment examines the way in which architects come to understand the structure of their problems. The performances of first and final year architectural students are compared with those of postgraduate science students and sixth form pupils. On the whole these groups show significantly different results and also different cognitive strategies. The second experiment poses design problems which involve both subjective and objective criteria, and examines the way in which final year architectural students are able to relate the different types of constraint produced. In the final section the significance of all the results is suggested. Some educational and methodological implications are discussed and some further experiments and investigations are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deployment of bioenergy technologies is a key part of UK and European renewable energy policy. A key barrier to the deployment of bioenergy technologies is the management of biomass supply chains including the evaluation of suppliers and the contracting of biomass. In the undeveloped biomass for energy market buyers of biomass are faced with three major challenges during the development of new bioenergy projects. What characteristics will a certain supply of biomass have, how to evaluate biomass suppliers and which suppliers to contract with in order to provide a portfolio of suppliers that best satisfies the needs of the project and its stakeholder group whilst also satisfying crisp and non-crisp technological constraints. The problem description is taken from the situation faced by the industrial partner in this research, Express Energy Ltd. This research tackles these three areas separately then combines them to form a decision framework to assist biomass buyers with the strategic sourcing of biomass. The BioSS framework. The BioSS framework consists of three modes which mirror the development stages of bioenergy projects. BioSS.2 mode for early stage development, BioSS.3 mode for financial close stage and BioSS.Op for the operational phase of the project. BioSS is formed of a fuels library, a supplier evaluation module and an order allocation module, a Monte-Carlo analysis module is also included to evaluate the accuracy of the recommended portfolios. In each mode BioSS can recommend which suppliers should be contracted with and how much material should be purchased from each. The recommended blend should have chemical characteristics within the technological constraints of the conversion technology and also best satisfy the stakeholder group. The fuels library is made up from a wide variety of sources and contains around 100 unique descriptions of potential biomass sources that a developer may encounter. The library takes a wide data collection approach and has the aim of allowing for estimates to be made of biomass characteristics without expensive and time consuming testing. The supplier evaluation part of BioSS uses a QFD-AHP method to give importance weightings to 27 different evaluating criteria. The evaluating criteria have been compiled from interviews with stakeholders and policy and position documents and the weightings have been assigned using a mixture of workshops and expert interview. The weighted importance scores allow potential suppliers to better tailor their business offering and provides a robust framework for decision makers to better understand the requirements of the bioenergy project stakeholder groups. The order allocation part of BioSS uses a chance-constrained programming approach to assign orders of material between potential suppliers based on the chemical characteristics of those suppliers and the preference score of those suppliers. The optimisation program finds the portfolio of orders to allocate to suppliers to give the highest performance portfolio in the eyes of the stakeholder group whilst also complying with technological constraints. The technological constraints can be breached if the decision maker requires by setting the constraint as a chance-constraint. This allows a wider range of biomass sources to be procured and allows a greater overall performance to be realised than considering crisp constraints or using deterministic programming approaches. BioSS is demonstrated against two scenarios faced by UK bioenergy developers. The first is a large scale combustion power project, the second a small scale gasification project. The Bioss is applied in each mode for both scenarios and is shown to adapt the solution to the stakeholder group importance and the different constraints of the different conversion technologies whilst finding a globally optimal portfolio for stakeholder satisfaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification of the non-functional requirements of applications and determining the required resources for their execution are activities that demand a great deal of technical knowledge, frequently resulting in an inefficient use of resources. Cloud computing is an alternative for provisioning of resources, which can be done using either the provider's own infrastructure or the infrastructure of one or more public clouds, or even a combination of both. It enables more flexibly/elastic use of resources, but does not solve the specification problem. In this paper we present an approach that uses models at runtime to facilitate the specification of non-functional requirements and resources, aiming to facilitate dynamic support for application execution in cloud computing environments with shared resources. © 2013 IEEE.