2 resultados para conditionally covering mapping
em Aston University Research Archive
Resumo:
The INTAMAP FP6 project has developed an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods and employing open, web-based, data exchange protocols and visualisation tools. This paper will give an overview of the underlying problem, of the project, and discuss which problems it has solved and which open problems seem to be most relevant to deal with next. The interpolation problem that INTAMAP solves is the generic problem of spatial interpolation of environmental variables without user interaction, based on measurements of e.g. PM10, rainfall or gamma dose rate, at arbitrary locations or over a regular grid covering the area of interest. It deals with problems of varying spatial resolution of measurements, the interpolation of averages over larger areas, and with providing information on the interpolation error to the end-user. In addition, monitoring network optimisation is addressed in a non-automatic context.
Resumo:
Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets.