35 resultados para condition monitoring method
em Aston University Research Archive
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing.
Resumo:
Proper maintenance of plant items is crucial for the safe and profitable operation of process plants, The relevant maintenance policies fall into the following four categories: (i) preventivejopportunistic/breakdown replacement policies, (ii) inspection/inspection-repair-replacernent policies, (iii) restorative maintenance policies, and (iv) condition based maintenance policies, For correlating failure times of component equipnent and complete systems, the Weibull failure distribution has been used, A new powerful method, SEQLIM, has been proposed for the estimation of the Weibull parameters; particularly, when maintenance records contain very few failures and many successful operation times. When a system consists of a number of replaceable, ageing components, an opporturistic replacernent policy has been found to be cost-effective, A simple opportunistic rrodel has been developed. Inspection models with various objective functions have been investigated, It was found that, on the assumption of a negative exponential failure distribution, all models converge to the same optimal inspection interval; provided the safety components are very reliable and the demand rate is low, When deterioration becomes a contributory factor to same failures, periodic inspections, calculated from above models, are too frequent, A case of safety trip systems has been studied, A highly effective restorative maintenance policy can be developed if the performance of the equipment under this category can be related to some predictive modelling. A novel fouling model has been proposed to determine cleaning strategies of condensers, Condition-based maintenance policies have been investigated. A simple gauge has been designed for condition monitoring of relief valve springs. A typical case of an exothermic inert gas generation plant has been studied, to demonstrate how various policies can be applied to devise overall maintenance actions.
Resumo:
This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.
Resumo:
In this study some common types of Rolling Bearing vibrations are analysed in depth both theoretically and experimentally. The study is restricted to vibrations in the radial direction of bearings having pure radial load and a positive radial clearance. The general vibrational behaviour of such bearings has been investigated with respect to the effects of varying compliance, manufacturing tolerances and the interaction between the bearing and the machine structure into which it is fitted. The equations of motion for a rotor supported by a bearing in which the stiffness varies with cage position has been set up and examples of solutions,obtained by digital simulation. is given. A method to calculate amplitudes and frequencies of vibration components due to out of roundness of the inner ring and varying roller diameters has been developed. The results from these investigations have been combined with a theory for bearing/machine frame interaction using mechanical impedance technique, thereby facilitating prediction of the vibrational behaviour of the whole set up. Finally. the effects of bearing fatigue and wear have been studied with particular emphasis on the use of vibration analysis for condition monitoring purposes. A number of monitoring methods have been tried and their effectiveness discussed. The experimental investigation was carried out using two purpose built rigs. For the purpose of analysis of the experimental measurements a digital mini computer was adapted for signal processing and a suite of programs was written. The program package performs several of the commonly used signal analysis processes and :include all necessary input and output functions.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
The future broadband information network will undoubtedly integrate the mobility and flexibility of wireless access systems with the huge bandwidth capacity of photonics solutions to enable a communication system capable of handling the anticipated demand for interactive services. Towards wide coverage and low cost implementations of such broadband wireless photonics communication networks, various aspects of the enabling technologies are continuingly generating intense research interest. Among the core technologies, the optical generation and distribution of radio frequency signals over fibres, and the fibre optic signal processing of optical and radio frequency signals, have been the subjects for study in this thesis. Based on the intrinsic properties of single-mode optical fibres, and in conjunction with the concepts of optical fibre delay line filters and fibre Bragg gratings, a number of novel fibre-based devices, potentially suitable for applications in the future wireless photonics communication systems, have been realised. Special single-mode fibres, namely, the high birefringence (Hi-Bi) fibre and the Er/Yb doped fibre have been employed so as to exploit their merits to achieve practical and cost-effective all-fibre architectures. A number of fibre-based complex signal processors for optical and radio frequencies using novel Hi-Bi fibre delay line filter architectures have been illustrated. In particular, operations such as multichannel flattop bandpass filtering, simultaneous complementary outputs and bidirectional nonreciprocal wavelength interleaving, have been demonstrated. The proposed configurations featured greatly reduced environmental sensitivity typical of coherent fibre delay line filter schemes, reconfigurable transfer functions, negligible chromatic dispersions, and ease of implementation, not easily achievable based on other techniques. A number of unique fibre grating devices for signal filtering and fibre laser applications have been realised. The concept of the superimposed fibre Bragg gratings has been extended to non-uniform grating structures and into Hi-Bi fibres to achieve highly useful grating devices such as overwritten phase-shifted fibre grating structure and widely/narrowly spaced polarization-discriminating filters that are not limited by the intrinsic fibre properties. In terms of the-fibre-based optical millimetre wave transmitters, unique approaches based on fibre laser configurations have been proposed and demonstrated. The ability of the dual-mode distributed feedback (DFB) fibre lasers to generate high spectral purity, narrow linewidth heterodyne signals without complex feedback mechanisms has been illustrated. A novel co-located dual DFB fibre laser configuration, based on the proposed superimposed phase-shifted fibre grating structure, has been further realised with highly desired operation characteristics without the need for costly high frequency synthesizers and complex feedback controls. Lastly, a novel cavity mode condition monitoring and optimisation scheme for short length, linear-cavity fibre lasers has been proposed and achieved. Based on the concept and simplicity of the superimposed fibre laser cavities structure, in conjunction with feedback controls, enhanced output performances from the fibre lasers have been achieved. The importance of such cavity mode assessment and feedback control for optimised fibre laser output performance has been illustrated.
Resumo:
The Product Service Systems, servitization, and Service Science literature continues to grow as organisations seek to protect and improve their competitive position. The potential of technology applications to deliver service delivery systems facilitated by the ability to make real time decisions based upon ‘in the field’ performance is also significant. Research identifies four key questions to be addressed. Namely: how far along the servitization continuum should the organisation go in a single strategic step? Does the organisation have the structure and infrastructure to support this transition? What level of condition monitoring should it employ? Is the product positioned correctly in the value chain to adopt condition monitoring technology? Strategy consists of three dimensions, namely content, context, and process. The literature relating to PSS, servitization, and strategy all discuss the concepts relative to content and context but none offer a process to deliver an aligned strategy to deliver a service delivery system enabled by condition based management. This paper presents a tested iterative strategy formulation methodology which is the result of a structured development programme.
Resumo:
Respiratory-volume monitoring is an indispensable part of mechanical ventilation. Here we present a new method of the respiratory-volume measurement based on a single fibre-optical long-period sensor of bending and the correlation between torso curvature and lung volume. Unlike the commonly used air-flow based measurement methods the proposed sensor is drift-free and immune to air-leaks. In the paper, we explain the working principle of sensors, a two-step calibration-test measurement procedure and present results that establish a linear correlation between the change in the local thorax curvature and the change of the lung volume. We also discuss the advantages and limitations of these sensors with respect to the current standards. © 2013 IEEE.
Resumo:
Background/aims Macular pigment is thought to protect the macula against exposure to light and oxidative stress, both of which may play a role in the development of age-related macular degeneration. The aim was to clinically evaluate a novel cathode-ray-tube-based method for measurement of macular pigment optical density (MPOD) known as apparent motion photometry (AMP). Methods The authors took repeat readings of MPOD centrally (0°) and at 3° eccentricity for 76 healthy subjects (mean (±SD) 26.5±13.2 years, range 18–74 years). Results The overall mean MPOD for the cohort was 0.50±0.24 at 0°, and 0.28±0.20 at 3° eccentricity; these values were significantly different (t=-8.905, p<0.001). The coefficients of repeatability were 0.60 and 0.48 for the 0 and 3° measurements respectively. Conclusions The data suggest that when the same operator is taking repeated 0° AMP MPOD readings over time, only changes of more than 0.60 units can be classed as clinically significant. In other words, AMP is not suitable for monitoring changes in MPOD over time, as increases of this magnitude would not be expected, even in response to dietary modification or nutritional supplementation.
Resumo:
Background/aims: Network 1000 is a UK-based panel survey of a representative sample of adults with registered visual impairment, with the aim of gathering information about people’s opinions and circumstances. Method: Participants were interviewed (Survey 1, n = 1007: 2005; Survey 2, n = 922: 2006/07) on a range of topics including the nature of their eye condition, details of other health issues, use of low vision aids (LVAs) and their experiences in eye clinics. Results: Eleven percent of individuals did not know the name of their eye condition. Seventy percent of participants reported having long-term health problems or disabilities in addition to visual impairment and 43% reported having hearing difficulties. Seventy one percent reported using LVAs for reading tasks. Participants who had become registered as visually impaired in the previous 8 years (n = 395) were asked questions about non-medical information received in the eye clinic around that time. Reported information received included advice about ‘registration’ (48%), low vision aids (45%) and social care routes (43%); 17% reported receiving no information. While 70% of people were satisfied with the information received, this was lower for those of working age (56%) compared with retirement age (72%). Those who recalled receiving additional non-medical information and advice at the time of registration also recalled their experiences more positively. Conclusions: Whilst caution should be applied to the accuracy of recall of past events, the data provide a valuable insight into the types of information and support that visually impaired people feel they would benefit from in the eye clinic.
Resumo:
Background: Self-monitoring of blood glucose is controversial in the management of type 2 diabetes. Some research suggests that self-monitoring improves glycaemic control, whereas other research is sceptical about its value for people with type 2 diabetes who are not on insulin. Although blood glucose meters are widely available and used by this group, patients' own views are absent from the debate. Aim: To explore the pros and cons of glucose monitoring from the patients' perspectives. Design of study: Qualitative repeat-interview study. Setting: Patients were recruited from 16 general practices and three hospital clinics within four local healthcare cooperatives in Lothian, Scotland. Method: Interview data from 40 patients diagnosed with type 2 diabetes within the previous 6 months were analysed using thematic analysis informed by grounded theory. We report findings from round 1 and round 2 interviews. Results: Glucose monitoring can heighten patients' awareness of the impact of lifestyle; for example, dietary choices, on blood glucose levels. Glucose monitoring amplifies a sense of 'success' or 'failure' about self-management, often resulting in anxiety and self-blame if glucose readings remain consistently high. Moreover, monitoring can negatively effect patients' self-management when readings are counter-intuitive. Conclusion: Our analysis highlights the importance of understanding the meanings that newly diagnosed patients attach to glucose self-monitoring. To maximise the positive effects of self-monitoring, health professionals should ensure that patients understand the purpose of monitoring and should clarify with patients how readings should be interpreted. © British Journal of General Practice.
Resumo:
Objective: To assess and explain deviations from recommended practice in National Institute for Clinical Excellence (NICE) guidelines in relation to fetal heart monitoring. Design: Qualitative study. Setting: Large teaching hospital in the UK. Sample: Sixty-six hours of observation of 25 labours and interviews with 20 midwives of varying grades. Methods: Structured observations of labour and semistructured interviews with midwives. Interviews were undertaken using a prompt guide, audiotaped, and transcribed verbatim. Analysis was based on the constant comparative method, assisted by QSR N5 software. Main outcome measures: Deviations from recommended practice in relation to fetal monitoring and insights into why these occur. Results: All babies involved in the study were safely delivered, but 243 deviations from recommended practice in relation to NICE guidelines on fetal monitoring were identified, with the majority (80%) of these occurring in relation to documentation. Other deviations from recommended practice included indications for use of electronic fetal heart monitoring and conduct of fetal heart monitoring. There is evidence of difficulties with availability and maintenance of equipment, and some deficits in staff knowledge and skill. Differing orientations towards fetal monitoring were reported by midwives, which were likely to have impacts on practice. The initiation, management, and interpretation of fetal heart monitoring is complex and distributed across time, space, and professional boundaries, and practices in relation to fetal heart monitoring need to be understood within an organisational and social context. Conclusion: Some deviations from best practice guidelines may be rectified through straightforward interventions including improved systems for managing equipment and training. Other deviations from recommended practice need to be understood as the outcomes of complex processes that are likely to defy easy resolution. © RCOG 2006.