3 resultados para compositional analysis

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the characteristics of intermediate pyrolysis oils derived from sewage sludge and de-inking sludge (a paper industry residue), with a view to their use as fuels in a diesel engine. The feedstocks were dried and pelletised, then pyrolysed in the Pyroformer intermediate pyrolysis system. The organic fraction of the oils was separated from the aqueous phase and characterised. This included elemental and compositional analysis, heating value, cetane index, density, viscosity, surface tension, flash point, total acid number, lubricity, copper corrosion, water, carbon residue and ash content. Most of these results are compared with commercial diesel and biodiesel. Both pyrolysis oils have high carbon and hydrogen contents and their higher heating values compare well with biodiesel. The water content of the pyrolysis oils is reasonable and the flash point is found to be high. Both pyrolysis oils have good lubricity, but show some corrosiveness. Cetane index is reduced, which may influence ignition. Also viscosity is increased, which may influence atomisation quality. Carbon residue and ash content are both high, indicating potential deposition problems. Compared with de-inking sludge pyrolysis oil (DSPO), sewage sludge pyrolysis oil (SSPO) has a higher heating value, but higher corrosiveness and viscosity. The conclusions are that both intermediate pyrolysis oils will be able to provide sufficient heat when used in diesel engine; however poor combustion and carbon deposition may be encountered. Blending of these pyrolysis oils with diesel or biodiesel could overcome these problems and is recommended for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface compositional change of GaP, GaAs, GaSb, InP, InAs, InSb, GeSi and CdSe single crystals due to low keV noble gas ion beam bombardment has been investigated by combining X-ray Photoelectron Spectroscopy (XPS) and Low Energy Ion Scattering Spectroscopy (LEISS). The purpose of using this complementary analytical method is to obtain more complete experimental evidence of ion beam modification in surfaces of compound semiconductors and GeSi alloy to improve the understanding of the mechanisms responsible for these effects. Before ion bombardment the sample surfaces were analysed nondestructively by Angular Resolved XPS (ARXPS) and LEISS to get the initial distribution of surface composition. Ion bombardment experiments were carried out using 3keV argon ions with beam current of 1μA for a period of 50 minutes, compositional changes in the surfaces of compound semiconductors and GeSi alloy were monitored with normal XPS. After ion bombardment the surfaces were re-examined with ARXPS and LEISS. Both XPS and LEISS results showed clearly that ion bombardment will change the compositional distribution in the compound semiconductor and GeSi surfaces. In order to explain the observed experimental results, two major theories in this field, Sigmund linear collision cascade theory and the thermodynamic models based on bombardment induced Gibbsian surface segregation and diffusion, were investigated. Computer simulation using TRIM code was also carried out for assistance to the theoretical analysis. Combined the results obtained from XPS and LEISS analyses, ion bombardment induced compositional changes in compound semiconductor and GeSi surfaces are explained in terms of the bombardment induced Gibbsian surface segregation and diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.