3 resultados para component-wise gradient boosting
em Aston University Research Archive
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.
Resumo:
In recent years, the boundaries between e-commerce and social networking have become increasingly blurred. Many e-commerce websites support the mechanism of social login where users can sign on the websites using their social network identities such as their Facebook or Twitter accounts. Users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation, which aims to recommend products from e-commerce websites to users at social networking sites in 'cold-start' situations, a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites (users who have social networking accounts and have made purchases on e-commerce websites) as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations (called user embeddings and product embeddings, respectively) from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the largest Chinese microblogging service Sina Weibo and the largest Chinese B2C e-commerce website JingDong have shown the effectiveness of our proposed framework.
Resumo:
Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to ±40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components. © 2006 Elsevier B.V. All rights reserved.