50 resultados para complexity metrics
em Aston University Research Archive
Resumo:
The research described here concerns the development of metrics and models to support the development of hybrid (conventional/knowledge based) integrated systems. The thesis argues from the point that, although it is well known that estimating the cost, duration and quality of information systems is a difficult task, it is far from clear what sorts of tools and techniques would adequately support a project manager in the estimation of these properties. A literature review shows that metrics (measurements) and estimating tools have been developed for conventional systems since the 1960s while there has been very little research on metrics for knowledge based systems (KBSs). Furthermore, although there are a number of theoretical problems with many of the `classic' metrics developed for conventional systems, it also appears that the tools which such metrics can be used to develop are not widely used by project managers. A survey was carried out of large UK companies which confirmed this continuing state of affairs. Before any useful tools could be developed, therefore, it was important to find out why project managers were not using these tools already. By characterising those companies that use software cost estimating (SCE) tools against those which could but do not, it was possible to recognise the involvement of the client/customer in the process of estimation. Pursuing this point, a model of the early estimating and planning stages (the EEPS model) was developed to test exactly where estimating takes place. The EEPS model suggests that estimating could take place either before a fully-developed plan has been produced, or while this plan is being produced. If it were the former, then SCE tools would be particularly useful since there is very little other data available from which to produce an estimate. A second survey, however, indicated that project managers see estimating as being essentially the latter at which point project management tools are available to support the process. It would seem, therefore, that SCE tools are not being used because project management tools are being used instead. The issue here is not with the method of developing an estimating model or tool, but; in the way in which "an estimate" is intimately tied to an understanding of what tasks are being planned. Current SCE tools are perceived by project managers as targetting the wrong point of estimation, A model (called TABATHA) is then presented which describes how an estimating tool based on an analysis of tasks would thus fit into the planning stage. The issue of whether metrics can be usefully developed for hybrid systems (which also contain KBS components) is tested by extending a number of "classic" program size and structure metrics to a KBS language, Prolog. Measurements of lines of code, Halstead's operators/operands, McCabe's cyclomatic complexity, Henry & Kafura's data flow fan-in/out and post-release reported errors were taken for a set of 80 commercially-developed LPA Prolog programs: By re~defining the metric counts for Prolog it was found that estimates of program size and error-proneness comparable to the best conventional studies are possible. This suggests that metrics can be usefully applied to KBS languages, such as Prolog and thus, the development of metncs and models to support the development of hybrid information systems is both feasible and useful.
Resumo:
Remote sensing data is routinely used in ecology to investigate the relationship between landscape pattern as characterised by land use and land cover maps, and ecological processes. Multiple factors related to the representation of geographic phenomenon have been shown to affect characterisation of landscape pattern resulting in spatial uncertainty. This study investigated the effect of the interaction between landscape spatial pattern and geospatial processing methods statistically; unlike most papers which consider the effect of each factor in isolation only. This is important since data used to calculate landscape metrics typically undergo a series of data abstraction processing tasks and are rarely performed in isolation. The geospatial processing methods tested were the aggregation method and the choice of pixel size used to aggregate data. These were compared to two components of landscape pattern, spatial heterogeneity and the proportion of landcover class area. The interactions and their effect on the final landcover map were described using landscape metrics to measure landscape pattern and classification accuracy (response variables). All landscape metrics and classification accuracy were shown to be affected by both landscape pattern and by processing methods. Large variability in the response of those variables and interactions between the explanatory variables were observed. However, even though interactions occurred, this only affected the magnitude of the difference in landscape metric values. Thus, provided that the same processing methods are used, landscapes should retain their ranking when their landscape metrics are compared. For example, highly fragmented landscapes will always have larger values for the landscape metric "number of patches" than less fragmented landscapes. But the magnitude of difference between the landscapes may change and therefore absolute values of landscape metrics may need to be interpreted with caution. The explanatory variables which had the largest effects were spatial heterogeneity and pixel size. These explanatory variables tended to result in large main effects and large interactions. The high variability in the response variables and the interaction of the explanatory variables indicate it would be difficult to make generalisations about the impact of processing on landscape pattern as only two processing methods were tested and it is likely that untested processing methods will potentially result in even greater spatial uncertainty. © 2013 Elsevier B.V.
Resumo:
Online enquiry communities such as Question Answering (Q&A) websites allow people to seek answers to all kind of questions. With the growing popularity of such platforms, it is important for community managers to constantly monitor the performance of their communities. Although different metrics have been proposed for tracking the evolution of such communities, maturity, the process in which communities become more topic proficient over time, has been largely ignored despite its potential to help in identifying robust communities. In this paper, we interpret community maturity as the proportion of complex questions in a community at a given time. We use the Server Fault (SF) community, a Question Answering (Q&A) community of system administrators, as our case study and perform analysis on question complexity, the level of expertise required to answer a question. We show that question complexity depends on both the length of involvement and the level of contributions of the users who post questions within their community. We extract features relating to askers, answerers, questions and answers, and analyse which features are strongly correlated with question complexity. Although our findings highlight the difficulty of automatically identifying question complexity, we found that complexity is more influenced by both the topical focus and the length of community involvement of askers. Following the identification of question complexity, we define a measure of maturity and analyse the evolution of different topical communities. Our results show that different topical communities show different maturity patterns. Some communities show a high maturity at the beginning while others exhibit slow maturity rate. Copyright 2013 ACM.
Resumo:
Representing knowledge using domain ontologies has shown to be a useful mechanism and format for managing and exchanging information. Due to the difficulty and cost of building ontologies, a number of ontology libraries and search engines are coming to existence to facilitate reusing such knowledge structures. The need for ontology ranking techniques is becoming crucial as the number of ontologies available for reuse is continuing to grow. In this paper we present AKTiveRank, a prototype system for ranking ontologies based on the analysis of their structures. We describe the metrics used in the ranking system and present an experiment on ranking ontologies returned by a popular search engine for an example query.
Resumo:
The assertion about the unique 'complexity' or the peculiarly intricate character of social phenomena has, at least within sociology, a long, venerable and virtually uncontested tradition. At the turn of the last century, classical social theorists, for example, Georg Simmel and Emile Durkheim, made prominent and repeated reference to this attribute of the subject matter of sociology and the degree to which it complicates, even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We present John Maynard Keynes' economic theory and its practical applications as an illustration. We conclude that the practical value of social scientific knowledge is not dependent on a faithful, in the sense of complete, representation of social reality. Instead, social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of social situations that can be altered or are actionable.
Resumo:
In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.
Resumo:
The Vapnik-Chervonenkis (VC) dimension is a combinatorial measure of a certain class of machine learning problems, which may be used to obtain upper and lower bounds on the number of training examples needed to learn to prescribed levels of accuracy. Most of the known bounds apply to the Probably Approximately Correct (PAC) framework, which is the framework within which we work in this paper. For a learning problem with some known VC dimension, much is known about the order of growth of the sample-size requirement of the problem, as a function of the PAC parameters. The exact value of sample-size requirement is however less well-known, and depends heavily on the particular learning algorithm being used. This is a major obstacle to the practical application of the VC dimension. Hence it is important to know exactly how the sample-size requirement depends on VC dimension, and with that in mind, we describe a general algorithm for learning problems having VC dimension 1. Its sample-size requirement is minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naively generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds may improve substantially on current upper bounds.
Resumo:
The assertion about the peculiarly intricate and complex character of social phenomena has, in much of social discourse, a virtually uncontested tradition. A significant part of the premise about the complexity of social phenomena is the conviction that it complicates, perhaps even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We refer to one of the most prominent and politically influential social scientific theories, John Maynard Keynes' economic theory as an illustration. We conclude that, the practical value of social scientific knowledge is not necessarily dependent on a faithful, in the sense of complete, representation of (complex) social reality. Practical knowledge is context sensitive if not project bound. Social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of practical social situations that can be altered or are actionable by relevant actors. This chapter represents an effort to re-examine the relation between social reality, social scientific knowledge and its practical application. There is a widely accepted view about the potential social utility of social scientific knowledge that invokes the peculiar complexity of social reality as an impediment to good theoretical comprehension and hence to its applicability.
Resumo:
PURPOSE: To provide a consistent standard for the evaluation of different types of presbyopic correction. SETTING: Eye Clinic, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom. METHODS: Presbyopic corrections examined were accommodating intraocular lenses (IOLs), simultaneous multifocal and monovision contact lenses, and varifocal spectacles. Binocular near visual acuity measured with different optotypes (uppercase letters, lowercase letters, and words) and reading metrics assessed with the Minnesota Near Reading chart (reading acuity, critical print size [CPS], CPS reading speed) were intercorrelated (Pearson product moment correlations) and assessed for concordance (intraclass correlation coefficients [ICC]) and agreement (Bland-Altman analysis) for indication of clinical usefulness. RESULTS: Nineteen accommodating IOL cases, 40 simultaneous contact lens cases, and 38 varifocal spectacle cases were evaluated. Other than CPS reading speed, all near visual acuity and reading metrics correlated well with each other (r>0.70, P<.001). Near visual acuity measured with uppercase letters was highly concordant (ICC, 0.78) and in close agreement with lowercase letters (+/- 0.17 logMAR). Near word acuity agreed well with reading acuity (+/- 0.16 logMAR), which in turn agreed well with near visual acuity measured with uppercase letters 0.16 logMAR). Concordance (ICC, 0.18 to 0.46) and agreement (+/- 0.24 to 0.30 logMAR) of CPS with the other near metrics was moderate. CONCLUSION: Measurement of near visual ability in presbyopia should be standardized to include assessment of near visual acuity with logMAR uppercase-letter optotypes, smallest logMAR print size that maintains maximum reading speed (CPS), and reading speed. J Cataract Refract Surg 2009; 35:1401-1409 (C) 2009 ASCRS and ESCRS
Resumo:
The purpose of this paper is to demonstrate the existence of a strong and significant effect of complexity in aphasia independent from other variables including length. Complexity was found to be a strong and significant predictor of accurate repetition in a group of 13 Italian aphasic patients when it was entered in a regression equation either simultaneously or after a large number of other variables. Significant effects were found both when complexity was measured in terms of number of complex onsets (as in a recent paper by Nickels & Howard, 2004) and when it was measured in a more comprehensive way. Significant complexity effects were also found with matched lists contrasting simple and complex words and in analyses of errors. Effects of complexity, however, were restricted to patients with articulatory difficulties. Reasons for this association and for the lack of significant results in Nickels and Howard (2004) are discussed. © 2005 Psychology Press Ltd.
Resumo:
We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson's implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.
Resumo:
Quality management is dominated by rational paradigms for the measurement and management of quality, but these paradigms start to “break down”, when faced with the inherent complexity of managing quality in intensely competitive changing environments. In this article, the various theoretical strategy paradigms employed to manage quality are reviewed and the advantages and limitations of these paradigms are highlighted. A major implication of this review is that when faced with complexity, an ideological stance to any single strategy paradigm for the management of quality is ineffective. A case study is used to demonstrate the need for an integrative multi-paradigm approach to the management of quality as complexity increases.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT