33 resultados para complex disease

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction. Tuberous Sclerosis Complex (TSC) is an autosomal-dominant disease caused by the loss of function of the heterodimeric complex hamartin/tuberin due to TSC1/TSC2 gene mutation. The consequent abnormal activation of mammalian target of rapamycin (mTOR), a serine threonine kinase regulating cellular growth, metabolism and proliferation, is responsible for the structural and functional abnormalities observed in TSC. mTOR inhibitors are a class of drugs specifically targeting the mTOR pathway with promising benefits as a specific targeted treatment of the disease. Areas covered. We have reviewed the literature focusing on the role of mTOR inhibitors in treating TSC-related conditions. They are currently approved for subependymal giant cell astrocytomas, renal angiomyolipomas and more recently for lymphangioleiomyomatosis, but a promising role has been shown also in the other clinical manifestation characteristics of TSC, such as cardiac rhabdomyomas, facial angiofibromas and epilepsy. Expert opinion. mTOR inhibition is considered a disease-modifying therapy and the best approach to prevent the progress of the natural history of the disease. For the first time we have the possibility not only to use a biologically targeted treatment, but also to address different manifestations at the same time, thus significantly improving the therapeutic outlook in this complex disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of these PrP aggregates is important both in attempting to the elucidate of the pathogenesis of prion disease and in the development of treatments designed to prevent or inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein aggregates. Mathematical models suggest that if aggregation/disaggregation or surface diffusion is the predominant factor, the size frequency distribution of the resulting protein aggregates in the brain should be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different types of PrP deposit, viz., the diffuse and florid-type PrP deposits in patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse plaques were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of plaque deviated significantly from a log-normal model in all brain areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid plaques. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse plaques. These results may be useful in the design of treatments to inhibit the development of protein aggregates in vCJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease is the commonest degenerative disease of the nervous system to affect elderly people. It is characterised by 'dementia', a global cognitive decline involving loss of short term memory, judgement and emotional control. In addition, patients may suffer a range of visual problems including impairment of visual acuity, colour vision, eye movement problems and complex visual disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the Abeta and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a common disorder of middle-aged and elderly people, in which there is degeneration of the extra-pyramidal motor system. In some patients, the disease is associated with a range of visual signs and symptoms, including defects in visual acuity, colour vision, the blink reflex, pupil reactivity, saccadic and smooth pursuit movements and visual evoked potentials. In addition, there may be psychophysical changes, disturbances of complex visual functions such as visuospatial orientation and facial recognition, and chronic visual hallucinations. Some of the treatments associated with PD may have adverse ocular reactions. If visual problems are present, they can have an important effect on overall motor function, and quality of life of patients can be improved by accurate diagnosis and correction of such defects. Moreover, visual testing is useful in separating PD from other movement disorders with visual symptoms, such as dementia with Lewy bodies (DLB), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Although not central to PD, visual signs and symptoms can be an important though obscure aspect of the disease and should not be overlooked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review describes a group of diseases known as the transmissible spongiform encephalopathies (TSEs), which affect animals and humans. Examination of affected brain tissue suggests that these diseases are caused by the acquisition and deposition of prion protein (PrP). Creutzfeldt-Jakob disease (CJD) is the most important form of TSE in humans with at least four different varieties of the disease. Variant CJD (vCJD), a new form of the disease found in the UK, has several features that differ from the classical forms including early age of onset, longer duration of disease, psychiatric presentation (for example, depression) and extensive florid plaque development in the brain. About 10 per cent of patients with CJD exhibit visual symptoms at disease presentation and approximately 50 per cent during the course of the disease. The most commonly reported visual symptoms include diplopia, supranuclear palsies, complex visual disturbances, homonymous visual field defects, hallucinations and cortical blindness. Saccadic and smooth pursuit movements appear to be more rarely affected. The agent causing vCJD accumulates in lymphoid tissue such as the spleen and tonsils. The cornea has lymphoid tissue in the form of corneal dendritic cells that are important in the regulation of the immune response in the anterior segment of the eye. The presence of these cells in the cornea has raised the possibility of transmission between patients via optical devices that contact the eye. Although such transmission is theoretically possible it remains highly improbable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal neuronal intermediate filament (IF) inclusions immunopositive for the type IV IF α-internexin have been identified as the pathological hallmark of neuronal intermediate filament inclusion disease (NIFID). We studied the topography of these inclusions in the frontal and temporal lobe in 68 areas from 10 cases of NIFID. In the cerebral cortex, CA sectors of the hippocampus, and dentate gyrus granule cell layer, the inclusions were distributed mainly in regularly distributed clusters, 50-800 μm in diameter. In seven cortical areas, there was a more complex pattern in which the clusters of inclusions were aggregated into larger superclusters. In 11 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the majority of the remaining areas, cluster size was smaller than 400 μm. The topography of the lesions suggests that there is degeneration of the cortico-cortical projections in NIFID with the formation of α-internexin-positive aggregates within vertical columns of cells. Initially, only a subset of cells within a vertical column develops inclusions but as the disease progresses, the whole of the column becomes affected. The corticostriate projection appears to have little effect on the cortical topography of the inclusions. © 2006 EFNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial patterns of the vacuolation ("spongiform change"), surviving cells, and prion protein (PrP) deposition were studied in the various cell laminae of the cerebellar cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Clustering of the histological features, with the clusters regularly distributed along the folia, was evident in all cell laminae. In the molecular layer, clusters of vacuoles coincided with the surviving Purkinje cells. In the granule cell layer, however, the spatial relationship between the vacuoles and surviving cells was more complex and varied between cases. PrP deposition was not spatially correlated with either the vacuoles or the surviving cells in any of the cerebellar laminae in the majority of cases. In some cases, there were spatial relationships between th histological features in the molecular and granule cell layers. The data suggest that degeneration of the cerebellar cortex in sCJD may occur in a topographic pattern consistent with the spread of prion pathology along anatomical pathways. The development of the vacuolation may be an early stage of the pathology in the cerebellum preceding the appearance of the PrP deposits. In addition, there is evidence that the pathological changes may spread across the different laminae of the cerebellar cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathological lesions characteristic of Alzheimer's disease (AD), viz., senile plaques (SP) and neurofibrillary tangles (NFT) may not be randomly distributed with reference to each other but exhibit a degree of sptial association or correlation, information on the degree of association between SP and NFT or between the lesions and normal histological features, such as neuronal perikarya and blood vessels, may be valuable in elucidating the pathogenesis of AD. This article reviews the statistical methods available for studying the degree of spatial association in histological sections of AD tissue. These include tests of interspecific association between two or more histological features using chi-square contingency tables, measurement of 'complete' and 'absolute' association, and more complex methods that use grids of contiguous samples. In addition, analyses of association using correlation matrices and stepwise multiple regression methods are described. The advantages and limitations of each method are reviewed and possible future developments discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discrete, microscopic lesions are developed in the brain in a number of neurodegenerative diseases. These lesions may not be randomly distributed in the tissue but exhibit a spatial pattern, i.e., a departure from randomness towards regularlity or clustering. The spatial pattern of a lesion may reflect its development in relation to other brain lesions or to neuroanatomical structures. Hence, a study of spatial pattern may help to elucidate the pathogenesis of a lesion. A number of statistical methods can be used to study the spatial patterns of brain lesions. They range from simple tests of whether the distribution of a lesion departs from random to more complex methods which can detect clustering and the size, distribution and spacing of clusters. This paper reviews the uses and limitations of these methods as applied to neurodegenerative disorders, and in particular to senile plaque formation in Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding a complex network's structure holds the key to understanding its function. The physics community has contributed a multitude of methods and analyses to this cross-disciplinary endeavor. Structural features exist on both the microscopic level, resulting from differences between single node properties, and the mesoscopic level resulting from properties shared by groups of nodes. Disentangling the determinants of network structure on these different scales has remained a major, and so far unsolved, challenge. Here we show how multiscale generative probabilistic exponential random graph models combined with efficient, distributive message-passing inference techniques can be used to achieve this separation of scales, leading to improved detection accuracy of latent classes as demonstrated on benchmark problems. It sheds new light on the statistical significance of motif-distributions in neural networks and improves the link-prediction accuracy as exemplified for gene-disease associations in the highly consequential Online Mendelian Inheritance in Man database. © 2011 Reichardt et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the spatial pattern of ß-amyloid (Aß) deposition throughout the temporal lobe in Alzheimer's disease (AD). Methods: Sections of the complete temporal lobe from six cases of sporadic AD were immunolabelled with antibody against Aß. Fourier (spectral) analysis was used to identify sinusoidal patterns in the fluctuation of Aß deposition in a direction parallel to the pia mater or alveus. Results: Significant sinusoidal fluctuations in density were evident in 81/99 (82%) analyses. In 64% of analyses, two frequency components were present with density peaks of Aß deposits repeating every 500–1000 µm and at distances greater than 1000 µm. In 25% of analyses, three or more frequency components were present. The estimated period or wavelength (number of sample units to complete one full cycle) of the first and second frequency components did not vary significantly between gyri of the temporal lobe, but there was evidence that the fluctuations of the classic deposits had longer periods than the diffuse and primitive deposits. Conclusions: (i) Aß deposits exhibit complex sinusoidal fluctuations in density in the temporal lobe in AD; (ii) fluctuations in Aß deposition may reflect the formation of Aß deposits in relation to the modular and vascular structure of the cortex; and (iii) Fourier analysis may be a useful statistical method for studying the patterns of Aß deposition both in AD and in transgenic models of disease.