3 resultados para compartmentalization
em Aston University Research Archive
Resumo:
ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 μM) or PD184352 (2 μM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability. © FASEB.
Resumo:
Structure–activity relationships are indispensable to identify the most optimal antioxidants. The advantages of in vitro over in vivo experiments for obtaining these relationships are, that the structure is better defined in vitro, since less metabolism takes place. It is also the case that the concentration, a parameter that is directly linked to activity, is more accurately controlled. Moreover, the reactions that occur in vivo, including feed-back mechanisms, are often too multi-faceted and diverse to be compensated for during the assessment of a single structure–activity relationship. Pitfalls of in vitro antioxidant research include: (i) by definition, antioxidants are not stable and substantial amounts of oxidation products are formed and (ii) during the scavenging of reactive species, reaction products of the antioxidants accumulate. Another problem is that the maintenance of a defined concentration of antioxidants is subject to processes such as oxidation and the formation of reaction products during the actual antioxidant reaction, as well as the compartmentalization of the antioxidant and the reactive species in the in vitro test system. So determinations of in vitro structure-activity relationships are subject to many competing variables and they should always be evaluated critically. (c) 2005 Published by Elsevier B.V.
Resumo:
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.