3 resultados para colony size, life-history
em Aston University Research Archive
Resumo:
The pattern of seasonal growth and the relation of growth rate to colony size were studied in four foliose and two crustose species of saxicolous lichens. A new method of measuring growth was used whereby the advance of a sample of lobes along millimetres marked on the substrate was measured under a magnification of x10. Three peaks of growth were found(in March, June and November) for the foliose species and a single peak (in May to August) for the crustose species. THe peaks of growth corresponded approximately to peaks of rainfall. Growth rate in relation to increasing colony size fell in a smooth exponential curve when expressed on a cm squared/ cm squared/ unit time basis. The result is consistent with a linear radial rate for most of the thallus sizes for the six species. There is also evidence for an exponential incresae in growth rate initially until about 1.5 cm thallus diameter in two of the sepcies when the linear radial rate is achieved.
Resumo:
Several types of discrete β-amyloid (Aβ) deposit or senile plaque have been identified in the brains of individuals with Alzheimer's disease and Down's syndrome. The majority of these plaques can be classified into four morphological types: diffuse, primitive, classic and compact. Two hypotheses have been proposed to account for these plaques. Firstly, that the diffuse, primitive, classic and compact plaques develop in sequence and represent stages in the life history of a single plaque type. Secondly, that the different Aβ plaques develop independently and therefore, unique factors are involved in the formation of each type. To attempt to distinguish between these hypotheses, the morphology, ultrastructure, composition, and spatial distribution in the brain of the four types of plaque were compared. Although some primitive plaques may develop from diffuse plaques, the evidence suggests that a unique combination of factors is involved in the pathogenesis of each plaque type and, therefore, supports the hypothesis that the major types of Aβ plaque develop independently.