3 resultados para colon myoelectric activity
em Aston University Research Archive
Resumo:
Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.
Resumo:
NMF induces the terminal differentiation or acquisition of more benign characteristics in certain malignant cells in vitro and has good antitumour activity against murine tumours in vivo. This study was concerned with a comparison of the mechanism of antitumour activity of NMF in vitro and in vivo against the murine TLX5 lymphoma, which is sensitive to NMF in vivo. TLX5 cells incubated continuously with NMF in vitro showed a concentration and time dependent decrease in cell growth rate, which was associated with an increase in membrane permeability, a decrease in cell size and at the higher NMF concentrations, cell death. Analysis of the cell cycle after incubation with NMF indicated an early G1 phase arrest. TLX5 cells were incubated with NMF and washed free of the drug. Analysis of clonogenicity and tumourigenicity showed that all viable cells retained their proliferative potential and malignancy. Therefore, TLX5 cells exposed to NMF in vitro are not terminally differentiated, but reside in a quiescent substate which was reversed on drug removal. The intracellular GSH levels of TLX5 cells was decreased in a concentration and time dependent fashion by NMF. GSH depletion of TLX5 cells was not however a prerequisite for growth arrest, unlike the reported data for human colon carcinoma cell lines. A single administration of NMF caused a dose dependent regression of the TLX5 lymphoma in tumour bearing mice. Cell death occurred by apoptosis and necrosis. The antitumour activity of NMF was dependent on formyl C-H bond fission, with the parent drug or metabolites reaching all parts of the tumour 4h after dosing. There was a non-dose dependent increase in the S phase population, which was due to an increase in DNA synthesis, 24h after administration of NMF. NMF administration caused a decrease in GSH levels of the TLX5 lymphoma, which did not correlate with the antitumour response. However, the GSH depleting agent, BSO, marginally increased the antitumour activity of NMF.
Resumo:
The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.